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Chloroplasts are organelles found in plant cells that conduct photosynthesis. The
subchloroplast locations of proteins are correlated with their functions. With the
availability of a great number of protein data, it is highly desired to develop a com-
putational method to predict the subchloroplast locations of chloroplast proteins. In
this study, we proposed a novel method to predict subchloroplast locations of proteins
using tripeptide compositions. It first used the binomial distribution to optimize the
feature sets. Then the support vector machine was selected to perform the prediction
of subchloroplast locations of proteins. The proposed method was tested on a reliable
and rigorous dataset including 259 chloroplast proteins with sequence identity < 25%.
In the jack-knife cross-validation, 92.21% envelope proteins, 93.20% thylakoid mem-
brane, 52.63% thylakoid lumen and 85.00% stroma can be correctly identified. The
overall accuracy achieves 88.03% which is higher than that of other models. Based on
this method, a predictor called ChloPred has been built and can be freely available
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from http://cobi.uestc.edu.cn/people/hlin/tools/ChloPred/. The predictor will provide
important information for theoretical and experimental research of chloroplast proteins.

Keywords: Subchloroplast localization; tripeptide; binomial distribution; support vector
machine.
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1. Introduction

The chloroplast is one of key organelles in green plant cells. It houses the machinery
necessary for photosynthesis, amino acid biosynthesis, pigment biosynthesis and so
on [2]. The chloroplast is divided into four parts: stroma, thylakoid lumen, thy-
lakoid membrane and envelope according to their structures and functions [2]. The
proteins located in these four subchloroplast locations play different biological roles.
The stroma is an internal space enclosed by the chloroplast double membrane but
excluding the thylakoid. It contains one or more small circular DNA, some ribo-
somes and some temporary products of photosynthesis. The thylakoid membrane,
an internal system of interconnected membranes, carries out the light reactions of
photosynthesis. The thylakoid lumen is the chloroplast compartment bounded by
the thylakoid membranes. The chloroplast envelope comprises the inner and outer
chloroplast membrane.

For timely understanding protein functions and realizing the process of pho-
tosynthesis, it needs to accurately identify the subchloroplast location of chloro-
plast proteins. Unfortunately, it is both time-consuming and costly for experimental
approach to confirm proteins location in chloroplast. Phylogenetic tree is a tradi-
tional method for most experimental scholars to predict the sub-subcellular loca-
tions of proteins. Although this method is not particularly expensive, it is more
time consuming than machine learning approaches. Furthermore, for the sequences
which do not have homologue sequences in benchmark data, phylogenetic tree will
produce ineffective, inexact and even wrong information. In the past several years,
lots of works have been proposed for protein subcellular localization prediction [4, 5,
10, 12-15, 32, 34-36, 38, 41, 43, 45, 57, 59, 64, 65, 69, 68, 70, 74, 79, 75, 81]. In par-
allel with these theoretical methods, large numbers of proteins have been sequenced
and annotated which promote the developments of machine learning approaches to
predict and annotate chloroplast proteins [20, 29, 58, 61]. For example, Emanuelsson
et al. [21] have developed a predictor called ChloroP to predict chloroplast transit
peptides and their cleavage sites. Tung et al. [61] proposed a Random Forest model
to predict of protein subchloroplast locations. Recently, Du et al. [20] have used
the pseudo-amino acid composition (PseAAC) to predict subchloroplast locations
of proteins and developed a server, called SubChlo. Overall accuracy (OA) of jack-
knife test is 67.18% for the dataset with the sequence identity of 60%. Based on
the same benchmark data, Shi et al. [58] have improved the accuracy to 89.31% by
using discrete wavelet transform to exact feature. However, many proteins with just
about 40% sequence identity might be homologous to each other. It has been proved
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that there is a close relationship between predictive accuracy and sequence identity
[50, 72]. High similarity data can surely lead to overestimation of the performance
of the methods considered.

The present study was dedicated to develop a new and more powerful predictor,
called ChloPred, for predicting subchloroplast localization of proteins. According
to a recent comprehensive review [9], to establish a really useful statistical predictor
for a protein system, we need to consider the following procedures: (i) construct
or select a valid benchmark dataset to train and test the predictor; (ii) formu-
late the protein samples with an effective mathematical expression that can truly
reflect their intrinsic correlation with the attribute to be predicted; (iii) introduce
or develop a powerful algorithm (or engine) to operate the prediction; (iv) properly
perform cross-validation tests to objectively evaluate the anticipated accuracy of the
predictor; (v) establish a user-friendly web-server for the predictor that is accessible
to the public. Below, let us describe how to deal with these steps one-by-one.

2. Materials and Methods
2.1. Dataset

Both amino acid sequences and annotation information of chloroplast proteins were
extracted from universal protein resource (Uniprot) [60]. To construct a reliable
benchmark dataset, the following steps were used to prepare high quality datasets:
(1) Although proteins with multiple subchloroplast locations have some special
biological functions, we collected the proteins with only one subchloroplast loca-
tion because the number of proteins with multiple subchloroplast locations is too
small to have statistical significance. (2) Proteins with ambiguous protein existence
annotations, such as “uncertain”, “predicted” and “inferred from homology” were
excluded because they lack confidence. (3) Only those proteins with experimental
confirmed subchloroplast location were included because they can provide correct
and validated information. (4) The sequences which are fragment of other pro-
teins were excluded because their information is redundant and not integral. (5)
Sequences containing nonstandard letters, such as “B”, “X” or “Z”, were excluded
because their meanings are ambiguous. (6) To avoid any homology bias, the proteins
with > 25% sequence identity to any other in the same subset were excluded using
PISCES [63]. After strictly following the above procedures, we finally obtained 259
proteins including 60 stroma proteins, 19 thylakoid lumen proteins, 103 thylakoid
membrane proteins and 77 envelope proteins.

2.2. Tripeptide compositions

It is one of the most important parts for pattern recognition to generate a
set of informative parameters. To avoid losing many important information
hidden in protein sequences, the PseAAC was proposed to replace the simple
amino acid composition (AAC) for representing the sample of a protein [6, 7].
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For a brief introduction about Chou’s PseAAC, visit the Wikipedia web-page
at http://en.wikipedia.org/wiki/Pseudo_amino_acid_composition. For a summary
about its recent development and applications, see a comprehensive review [8].
Ever since the concept of PseAAC was proposed by Chou [6] in 2001, it has rapidly
penetrated into almost all the fields of protein attribute prediction, such as predict-
ing protein structural classes [37, 56|, predicting protein quaternary structure [76],
identifying bacterial virulent proteins [52], identifying cell wall lytic enzymes [18],
identifying risk type of human papillomaviruses [22], identifying DN A-binding pro-
teins [24], predicting homo-oligomeric proteins [55], predicting protein secondary
structure content [3], predicting supersecondary structure [83], predicting enzyme
family and sub-family classes [54, 66, 82], predicting protein subcellular location
[35, 36, 80], predicting subcellular localization of apoptosis proteins [32, 35, 44,
19], predicting protein subnuclear location [33], predicting protein submitochon-
dria locations [75, 51|, predicting G-Protein-Coupled Receptor Classes [27, 53],
predicting protein folding rates [28], predicting outer membrane proteins [39], pre-
dicting cyclin proteins [48], predicting GABA(A) receptor proteins [49], identifying
bacterial secreted proteins [73], identifying the cofactors of oxidoreductases [77],
identifying lipase types [78], identifying protease family [30], predicting Golgi pro-
tein types [17], classifying amino acids [26], among many others.

Recently, Anishetty et al. [1] demonstrated that the tripeptide may be used to
predict plausible structures for oligopeptides and denovo protein design. Tripeptide
motifs represent potentially important starting points for design of small molecule
biological modulators [62]. Thus, tripeptide composition was employed to encode
chloroplast protein sequences in this study. Actually, like dipeptide composition
[40, 42], tripeptide composition, tetrapeptide composition, pentapeptide composi-
tion et al. are just different modes of Chou’s PseAAC. According to the general
form of Chou’s (PseAAC) (see [8, Eq. 6]), the general form of Chou’s PseAAC can
be formulated as

P =1, %2, 0is ... 0], (2.1)

where T is a transpose operator, while the subscript €2 is an integer and its value
as well as the components 1, s,... will depend on how to extract the desired
information from the amino acid sequence of P. Based on the above general equa-
tion, for the general tripeptide composition, a chloroplast protein with length of L
can be characterized as an 2 = 20 x 20 x 20 = 8000 dimension feature vector and
described as follows:

Fso00 = [f1, f2: -5 fis- -, fsooo] " (2.2)
here symbol T denotes the transposition of vector. f; is the frequency of the ith-
tripeptide and expressed as:

8000

fi=mni an =ni/(L - 2), (2.3)
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here n; and L denote the number of the ith-tripeptide and length of the protein,
respectively.

2.3. Feature selection

In machine learning problems, to avoid the high-dimensional problems such as
“dimension disaster”, overfitting or redundancy [67], dimensionality reduction is
an important technique for removing irrelevant features (or redundant features)
and building robust models. Some algorithms such as principal component analysis
[46], minimal-redundancy-maximal-relevance (mRMR) [31], diffusion Maps [71] and
the analysis of variance (ANOVA) [40] have been proposed for reducing the dimen-
sionality. This study will introduce a new algorithm based on binomial distribution
to optimize the feature sets [25]. Eight thousands kinds of tripeptides may occur
in four classes of chloroplast protein dataset. Each kind of tripeptide occurring in
one type may be a stochastic event. Then, the probability of the ith-tripeptide
occurring in the jth-class (j = stroma, thylakoid lumen, thylakoid membrane and
envelope) can be defined by:

ol N

here probability CL;; is also called the confidence level (CL) of ith-tripeptide in
jth-class. N; denotes the total number of sth-tripeptide in the dataset. n; denotes
the occurrence number of ith-tripeptide in jth-class. The sum is taken from ng;
to INV;. The probability p; is the relative frequency of class j in the dataset and
defined as:

8000 8000

pj = Z N Z Ni, (2.5)
i=1 i=1

here S°°°0 N; and 35%%° ny; are the total occurrence number of all tripeptides in
the dataset and in jth-class proteins, respectively.

If there are 2 tripeptides whose CL;; is larger than a given cutoff CL,, the
frequencies of these tripeptides are selected as optimized features expressed as:

Fo=1[fi,f2-- fir---, fa]*. (2.6)

If CL, is set to zero, 8000 tripeptides are all selected. If CL, > 1, no tripep-
tides are selected. For different cutoff threshold of CL,, the value of Q will be
different. Based on CL (Eq. (2.3)), high-dimensional data can be projected into
low-dimensional space. The final 2 will be determined by cross-validation.

2.4. Support vector machine

Support vector machine (SVM) is a wonderful and popular machine learning
method based on statistical learning theory. Because of its easy-to-use and good
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performance, SVM has been widely applied in protein bioinformatics. For multi-
class problems, several strategies such as one-versus-rest (OVR) and one-versus-
one (OVO) can be used to extend the traditional SVM. This paper adopts
OVO strategy for multi-class classification. The software toolbox used to imple-
ment SVM is Libsvm written by Lin’s lab and can be freely downloaded from:
http: //www.csie.ntu.edu.tw/~cjlin/libsvm [23]. Usually, four kinds of kernel func-
tions, i.e. linear function, polynomial function, sigmoid function and radial basis
function (RBF), are applied to perform predictions. Empirical studies have demon-
strated that the RBF outperforms the other three kinds of kernel functions. Hence,
we used the RBF to perform the prediction. The grid search program was applied
to optimize the regularization parameter C' and kernel parameter v using five-fold
cross-validation.

2.5. Performance evaluation

In statistical prediction, the following three cross-validation methods are often used
to examine a predictor for its effectiveness in practical application: independent
dataset test, sub-sampling test and jack-knife test [16]. However, of the three test
methods, the jack-knife test is deemed the least arbitrary and objective as eluci-
dated in [9] and demonstrated by Eqs. (28)—(31) therein. Accordingly, the jack-knife
test has been widely and increasingly used to examine the power of various statis-
tical predictors [75, 41, 43, 47, 35, 18, 22, 3, 54, 82, 27, 48]. Thus the jack-knife
cross-validation was used to evaluate the performance of the proposed model. Two
important evaluating parameters: sensitivity (Sn) and OA were calculated as the
following formulas:

OA =" TP;/N, (2.8)

here TP; and N; are the numbers of correctly predicted proteins and total number
of the ith-class, respectively. N is the total number of four classes of proteins in the
dataset.

3. Results and Discussion
3.1. Prediction accuracy

The specific tripeptides can be selected by using Eq. (2.4). In our statistics, only
tripeptides with N; > 3 are considered, because occurrence of a tripeptide with
N; < 3 in chloroplast proteins is an event of small probability (p < 0.0001). There-
fore, we selected the tripeptides with different confidence levels under the constraint
N; > 3. There are 6723 tripeptides with N; > 3 in the benchmark dataset.

In general, the tripeptide sets with high CL give more reliable information
for classification. However, the number of these words is too small to afford
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enough information, which deduces the poor predictive accuracy. For example, using
>99.9% as CL, we can achieve 28 tripeptides. But the OA is only 52.51% in five-fold
cross-validation. In contrast, the tripeptide sets with low confidence contains too
many components. But it would reduce the cluster-tolerant capacity so as to lower
down the cross-validation accuracy. For instance, 6510 tripeptides with > 50% of CL
can only produce the OA of 53.28% in five cross-validation. Therefore, using appro-
priate tripeptide sets would yield a prediction with higher accuracy. By changing
the cutoff of CL, we can obtain a series of tripeptide sets. For economizing time and
improving efficiency, we first used five-fold cross-validation to optimize the regular-
ization parameter C' and kernel parameter 7. The three dimension graph for feature
dimension, CL and OA is shown in Fig. 1. It exhibits that the five-cross-validated
accuracy increases to 87.26% when using > 97.04% as CL. The optimized tripep-
tide set contains 571 dimension feature vector. The regularization parameter C' and
kernel parameter v are 512 and 0.0078125, respectively. The numbers of tripep-
tide with this CL are 122, 167, 105 and 178, respectively for envelope, thylakoid
membrane, thylakoid lumen and stroma.

Furthermore, we examined the jack-knife-cross-validated accuracy using 571
dimension features. Results are recorded in Table 1. As it can be seen from Table 1,
92% (71/77) envelope, 93% (96/103) thylakoid membrane, 53% (10/19) thylakoid
lumen and 85% (51/60) stroma proteins can be correctly predicted. OA achieves
88.03%. It should be noticed that the accuracy of thylakoid lumen is dramatically
lower than that of another three classes. The reason is that the benchmark data
is unbalance and fewer features (105) are selected from thylakoid lumen proteins.

OA _ ,=87.26

max2

(CL=97.04%, FD=571) |i

Overall Accuracy (%)

Fig. 1. (Color online) The graph for predicting subchloroplast locations of proteins. Dark line

denotes 3D curve. Three gray lines are projections on three planes (OA /feature dimension plane,
OA /confidence level plane, confidence level/feature dimension plane).
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Table 1. The comparison of performance of proposed model and other models.

Accuracy (%)

Thylakoid Thylakoid

Envelope membrane lumen Stroma Overall
SVM (571 tripeptides) 92.21 93.20 52.63 85.00 88.03
SVM (400 dipeptides) 55.84 78.64 0 35.00 55.98
SVM (20 AAs) 45.45 88.35 0 25.00 53.28
SVM (20 AAs+ 400 dipeptides) 57.14 70.87 0 48.33 56.37
SVM (PseAAC) 66.23 75.73 10.53 43.33 60.62
Naive Bayes (576 tripeptides) 85.71 70.87 0 55.00 66.41
Naive Bayes (PseAAC) 38.96 49.51 26.32 60.00 47.10
RBF Network (560 tripeptides) 80.52 54.37 52.63 81.67 68.34
RBF Network (PseAAC) 59.74 67.96 10.53 36.67 54.05

With the rapid expansion of the chloroplast protein dataset, more tripeptides with
a higher CL will be obtainable, making the prediction more accurate.

3.2. Comparison accuracies

It is necessary to investigate whether the proposed method has a better performance
than other existing approaches. Du et al. [20] have constructed a dataset (S60)
containing 262 proteins with identity of 60% and predicted them using PseAAC.
The accuracy is only 67%. Shi et al. [58] achieved an accuracy of 86% using the
same benchmark dataset. Nevertheless, we cannot provide direct comparison with
these works because the location annotation of some proteins in the dataset S60
have been changed with the update of Uniprot. We are only able to give a rough
comparison between our method and the two methods. The benchmark dataset in
our study has the same scale as S60, but the sequence identity of our study is much
lower than that of S60. That is to say our dataset is more rigorous and objective.
Moreover, on this dataset, we achieved 88% accuracy which is better than that of
other methods in the literatures [20, 58].

Furthermore, we compared the accuracy of the proposed method with that of
other methods using our dataset. First, we compared the performance of optimized
tripeptides with other parameters, such as: dipeptides, amino acid and PseAAC. As
it can be seen from Table 1, optimized tripeptides achieve the best results among all
parameters. Second, we compared the performance of SVM algorithm with Naive
Bayes and RBF Network using tripeptides. We repeated the process of feature
selection for finding highest accuracies of Naive Bayes and RBF Network. Results
in Table 1 show that the highest accuracies are 66.41 and 68.34% for Naive Bayes
and RBF Network, respectively. The optimized feature sets for the two methods
contain 576 and 560 vectors, respectively. Table 1 also records the results of Naive
Bayes and RBF Network using PseAAC as parameters. It is obvious that the OA
of our method is the best one among all listed methods. This result indicates that
our method can be used for the prediction of subchloroplast protein location.
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4. Conclusion

In this study, we developed a SVM-based method to predict the subchloroplast
locations of chloroplast proteins using primary sequence information. A novel fea-
ture selection technique based on binomial distribution is proposed to optimize
the feature set. Results in Table 1 show that the proposed method achieves an
OA of 88.03% in the jack-knife test on a very rigorous and objective dataset,
which demonstrates the capability of binomial distribution technique in the pro-
cess of feature selection. Since user-friendly and publicly accessible web-servers
represent the future direction for developing practically more useful models, simu-
lated methods, or predictors [11], a web-server for the method presented in this
paper is constructed and can be freely available from http://cobi.uestc.edu.cn/
people/hlin/tools/ChloPred/.
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