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a b s t r a c t

Conotoxins are small disulfide-rich peptide toxins, which have the exceptional diversity of sequences.
Because conotoxins are able to specifically bind to ion channels and interfere with neurotransmission,
they are considered as the excellent pharmacological candidates in drug design. Appropriate type assign-
ment of newly sequenced mature ion channel-targeted conotoxins with computational method is condu-
cive to explore the biological and pharmacological functions of conotoxins. In this paper, we developed a
novel method based on binomial distribution and radial basis function network to predict the types of
ion-channel targeted conotoxins. We achieved the overall accuracy of 89.3% with average accuracy of
89.7% in the prediction of three types of ion channel-targeted conotoxins in jackknife cross-validation
test, indicating that the method is superior to other state-of-the-art methods. In addition, we evaluated
the proposed model with an independent dataset including 77 conotoxins. The overall accuracy of 85.7%
was achieved, validating that our model is reliable. Moreover, we used the proposed method to annotate
336 function-undefined mature conotoxins in the UniProt Database. The model provides the valuable
instructions for theoretical and experimental research on conotoxins.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Conotoxins are disulfide-rich small peptides and the mature
peptide sequences contain only 10–30 amino acids. However,
conotoxins have high sequence diversity. Conotoxins have a wide
range of targets, including G protein-coupled receptors, nicotinic
acetylcholine and neurotensin receptor. Therefore they have
widely biological applications, such as the treatment of chronic
pain, epilepsy, spasticity and cardiovascular diseases (Han et al.,
2008; Watters, 2005). Especially, the majority of conotoxins have
high specificity and affinity towards ion channels. They have been
deemed as important pharmacological agents in ion channel re-
search and widely used as pharmacological tools for neuroscience
research (Han et al., 2008; Terlau and Olivera, 2004; Watters,
2005). According to the types of ion channel activities, conotoxins
can be classified as calcium (Ca), sodium (Na) and potassium (K)
channel-targeted conotoxins (Terlau and Olivera, 2004). It has been
estimated that there are over 100,000 different conotoxins (Daly
and Craik, 2009), but only 1703 conotoxins have been published
in the Universal Protein Resource (UniProt, Fourth Dec. 2012).
And few records can provide function annotation of the types of

ion channel-targeted conotoxins. Therefore, identification of the
type of a newly sequenced conotoxin is beneficial to study its bio-
logical and pharmacological functions.

Unfortunately, the determination of the functions of conotoxins
requires long time and high cost for wet experimental approaches.
Bioinformatics analysis is a convenient methodology for prelimin-
ary function analysis of newly sequenced conotoxins. System clas-
sification and function annotation is an important feature and of
major interest to the experimental biologists. In the past years,
several approaches have been reported to predict conotoxins based
on primary sequences. Liu et al. and Peng et al. proposed to use
cDNA library to identify different superfamily of conotoxins (Liu
et al., 2008; Peng et al., 2008). Mondal et al. developed a support
vector machine (SVM) model to predict conotoxin superfamily
with pseudo amino acid composition (PseAAC) (Mondal et al.,
2006). They correctly predicted 88.1% superfamilies of conotoxins.
In our recent work, an IDQD model was proposed to predict cono-
toxin superfamily and family (Lin and Li, 2007). The overall accura-
cies of conotoxin superfamily and family were 87.7% and 72%,
respectively. Furthermore, the Toxin-AAM method was used to
predict conotoxin superfamily with evolutionary information
through integrating pairwise sequence comparison with amino
acid composition (Zaki et al., 2011a). Subsequently, Zaki et al.
developed another method called SVM-Freescore algorithm to im-
prove predictive sensitivity and specificity (Zaki et al., 2011b).
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Recently, Shen and his colleagues used diffusion maps to optimize
feature set for the prediction of conotoxin superfamily and im-
proved the overall accuracy to 90.3% (Fan et al., 2011; Yin et al.,
2011). Although these methods can achieve some helpful informa-
tion on conotoxin research, they only indirectly provide possible
function information of conotoxins. For example, Delta-
conotoxin-like Ac6.1 (Uniprot accession number: P0C8V5) (Gowd
et al., 2008) and Omega-conotoxin-like Ai6.2 (Hillyard et al.,
2008) (Uniprot accession number: P0CB10), belonging to the cono-
toxin O1 superfamily, target different types of ion channels. The
Delta-conotoxin-like Ac6.1 binds to voltage-gated sodium chan-
nels, while the Omega-conotoxin-like Ai6.2 blocks voltage-gated
calcium channels. Therefore, it is urgent and necessary to develop
a simple and efficient method to predict the types of ion channels-
targeted conotoxins.

To the best of our knowledge, there is no computational system
for predicting the types of ion channel-targeted conotoxins. In this
work, we developed a computational model based on radial basis
function network (RBF network) to predict the types of ion chan-
nel-targeted conotoxins, providing a useful tool for further physio-
logical and pharmacological studies. A non-redundant benchmark
dataset including 112 mature conotoxins was established to train
and test the performance of the proposed model. The binomial dis-
tribution was used to reduce feature redundancy for optimal fea-
ture set. Jackknife cross-validation was used to evaluate the
accuracy of the proposed method. An overall accuracy of 89.3%
was obtained. Furthermore, we used an independent dataset to
evaluate the proposed model and obtained the overall accuracy
of 85.7%. Finally, we used the proposed model to predict 336 func-
tion-undefined mature conotoxins. Other researchers may use the
model and relevant results to study the functions of conotoxins.

2. Materials and methods

2.1. Datasets

The raw datasets adopted in this research were extracted from
the UniProt (Magrane and Consortium, 2011). For the purpose of
obtaining a reliable benchmark dataset, the following steps were
used to construct high quality datasets. Firstly, conotoxins with
ambiguous existence annotations, such as ‘uncertain’, ‘predicted’
and ‘inferred from homology’ were excluded because they lack in
confidence. Secondly, only those peptides with experimental con-
firmed functional annotation for targeting ion channel were in-
cluded because they can provide correct and validated
information. Thirdly, we only chose the mature conotoxin se-
quences since the mature peptides have biological functions. Final-
ly, the sequences containing nonstandard letters, such as ‘B’, ‘X’ or
‘Z’, were excluded because their meanings are ambiguous. After the
above strict screening procedure, we obtained 195 sequences
including 37 potassium ion channel-targeted conotoxins
(K-conotoxins), 86 sodium ion channel-targeted conotoxins (Na-
conotoxins) and 72 calcium ion channel-targeted conotoxins
(Ca-conotoxins).

In order to include as many sequences as possible without in-
crease sequence homology bias, the CD-HIT program (Li and
Godzik, 2006) was used to prune the data. By setting the cutoff
of sequence identity to 80%, 112 sequences were remained in the
final datasets including 24 K-conotoxins, 43 Na-conotoxins and
45 Ca-conotoxins.

For further estimating the performance of the method, we also
collected 77 ion channel-targeted conotoxins which are indepen-
dent from training set. Among these conotoxins, 12 cases target
potassium ion channel; 41 cases target sodium ion channel; 24
cases target calcium ion channel. The conotoxin sequences with

unclearly function annotation were regarded as function-unde-
fined conotoxins. We totally collected 336 function-undefined
conotoxins.

2.2. Features extraction

A large amount of feature extraction methods has been put for-
ward (Daly and Craik, 2009; Han et al., 2008; Terlau and Olivera,
2004; Yin et al., 2011; Zaki et al., 2011a,b). Because dipeptides
can reflect the order of amino acids and encapsulate the global
information for each protein sequence, it has been widely used in
protein bioinformatics. In this work, we also extracted features
from dipeptide compositions. The dipeptide compositions can pro-
vide total 400 (20 � 20) dimensions of vectors and can be calcu-
lated by the following equation:

Fab ¼ mab=Mb ð1Þ

where mab represents the occurrence number of the a-th dipeptide
in b-th sequence, Mb represents the total number of dipeptides in
the b-th sequence.

2.3. Binomial distribution

Feature selection is an important issue in pattern recognition,
not only for the insight gained from determining relevant model-
ing variables, but also for the improved understandability, scalabil-
ity, possibility, and accuracy of the resulting models. Thus, the
optimized parameters could improve predictive accuracy. So far,
many feature selection techniques have been proposed to optimize
feature set (Feng and Luo, 2008; Li et al., 2012), such as, principal
component analysis (PCA) (Rocchi et al., 2004), minimal-redun-
dancy-maximal-relevance (mRMR) (Peng et al., 2005), diffusion
maps (Yin et al., 2011) and the analysis of variance (ANOVA) (Lin
and Ding, 2011). Here, a novel method based on binomial distribu-
tion was used to perform feature selection (Feng and Luo, 2008).

Three types of ion channel-targeted conotoxin dataset may con-
tain four hundreds kinds of dipeptides. Each kind of dipeptide in
one type may be a stochastic event. Then, the probability of the
i-th dipeptide occurring in the j-th class (j = K-conotoxin, Na-cono-
toxin and Ca-conotoxin) can be defined by:

CLij ¼ 1�
XNi

n¼nij

Ni!

n!ðNi � nÞ! pn
j ð1� pjÞ

Ni�n ð2Þ

where CLij is also called the confidence level (CL) of the i-th dipep-
tide in the j-th type; Ni represents the total number of the i-th
dipeptide in the dataset. nij represents the occurrence number of
the i-th dipeptide in the j-th type. The sum is taken from nij to Ni.
The probability pj is the relative frequency of class j in the database
and defined as:

pj ¼
X400

i¼1

nij

,X400

i¼1

Ni ð3Þ

where
P400

i¼1 Ni and
P400

i¼1 nij are the total occurrence number of all
dipeptides in the dataset and in the j-th type conotoxin,
respectively.

In the three types of conotoxins, three CLs (CLi K, CLi Na and CLi Ca)
of the i-th dipeptide may be calculated according to Eq. (2). Then
we may define the confidence level of dipeptide i in benchmark
dataset as follows:

CLi ¼maxfCLi K; CLi Na; CLiCag ð4Þ

If there are m dipeptides whose CLi is larger than a given cutoff,
CLo, the frequencies of these dipeptides are selected as optimized
features and expressed as follows:
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Fm ¼ ½f1; f2; � � � ; fi; � � � ; fm�T ð5Þ

If CLo is set to zero, all the 400 dipeptides are selected. If CLo > 1,
no dipeptides are selected. Based on confidence level (Eq. (2)), high-
dimensional data can be projected into low-dimensional space. The
parameter m or CLo can be chosen through cross-validation.

2.4. RBF network

Artificial Neural Network (ANN) is one of the most successful
technologies in the last two decades and is widely applied in various
fields, including data mining and bioinformatics (Anthony et al.,
1995; Lin et al., 2005). The RBF network is a special type of ANNs.
Due to its faster training procedure and better approximation capa-
bilities compared with other network types, such as simple network
configuration, it has been widely used in protein prediction fields
(Chen et al., 2011; Ou et al., 2008, 2010). Based on its universal
approximation capability, the RBF network can approximate any
nonlinear function with sufficient neurons in the hidden layer.

A typical RBF network is composed of three layers: an input
layer, a hidden layer with a non-linear RBF activation function
and a linear output layer. The input layer consists of many nodes
and connects the network with external environment. The second
layer is the only hidden one in the network and its role is to carry
out a nonlinear transformation from the input space to the hidden
space. And the hidden space will have a high dimension. The out-
put layer supplies the response to the activations of the hidden
nodes. The hidden layer is connected with output layer by the
weight, x. The RBF network is modeled by the following relation:

ŷk ¼
Xm

i¼1

xikRiðxÞ ðk ¼ 1;2; � � � ;pÞ ð6Þ

where Ri(x) represents the RBF.
The gaussian function is the most widely used basis function in

nonlinear transformation and it can be defined as follows:

RiðxÞ ¼ expð�kx� cik2
=2r2

i Þ; ði ¼ 1;2; � � � ;mÞ ð7Þ

where kx�cik represents Euclidean norm; ci, ri and Ri are the center,
the width and the output of the i-th hidden unit, respectively.

The software used in this work was Weka (Waikato Environ-
ment for Knowledge Analysis) (Hall et al., 2009) developed at the
University of Waikato, New Zealand.

2.5. The criteria definitions

In statistical prediction, independent dataset test, sub-sampling
test (such as 5-fold or 10-fold cross validation) and jackknife test
are often used to examine the power of a predictor (Lu et al.,
2009; Shen and Chou, 2009; Zhou and Cai, 2006). Here, the jack-
knife test is applied to evaluate the performance of the proposed
methods. In the jackknife cross-validation, each sequence in the
training dataset is selected in turn as an independent testing sam-
ple and all the rule-parameters are calculated without including
the one being identified.

The predictive capability of the algorithm is estimated by the
three parameters: sensitivity (Sn), overall accuracy (Ac) and aver-
age accuracy (AA) which are defined as follows:

Sni ¼ TPi=ðTPi þ FNiÞ ð8Þ

OA ¼
Xl
i¼1

TPi=N ð9Þ

AA ¼
Xl
i¼1

Sni=l ð10Þ

where TPi represents the number of the correctly recognized i-th
type of conotoxins; FNi represents the number of the i-th types of
conotoxins recognized as other types of conotoxins; l represents
the number of types (here l = 3); N represents the total number
of sequences (here N = 112).

3. Results

3.1. Improvement of accuracy by feature selection

Generally, high confidence level of selecting dipeptides allows
relatively small feature sets and more reliable information for pre-
diction. The minimum number of variables to fit the data can in-
crease the robustness of prediction (Park et al., 2005). However,
the number of these features is too small to afford enough informa-
tion, which results in the poor predictive accuracy. For example, if
we select 99.9% as the cutoff of confidence level, we can achieve
nine kinds of dipeptides. But the obtained overall accuracy is only
64.29% in jackknife cross-validation. In contrast, the dipeptide sets
with low confidence contains too many components. The larger the
dimension of the vectors is, the more information the representa-
tion bears. However, if the input vector contains too many compo-
nents, it would reduce the cluster-tolerant capacity so as to lower
the cross-validated accuracy. For instance, 349 dipeptides with
>50% of confidence level can only produce the overall accuracy of
61.61% in jackknife cross-validation. Therefore, appropriate dipep-
tide sets allow the higher prediction accuracy.

By changing the cutoff of confidence level, we can obtain a series
of dipeptide sets. Each of the dipeptide sets was input into RBF net-
work to investigate its prediction performance through jackknife
cross-validation. Accordingly, we plotted a three-dimensional curve
for confidence level, feature dimension and overall accuracy shown
in Fig. 1. The results show that the peak of the curve appears at 70
dipeptides with the confidence level of 96.658%. The maximum over-
all accuracy is 89.3% with the average accuracy of 89.7%. In the set of
70 kinds of dipeptides, 27, 24 and 19 kinds of dipeptides were se-
lected from K-conotoxin, Na-conotoxin and Ca-conotoxin, respec-
tively. Subsequently, we examined the predictive results for three
types of conotoxins in details. The results are recorded in Table 1.
As can be seen from Table 1, the sensitivities for K-conotoxin, Na-
conotoxin and Ca-conotoxin are 91.7%, 88.4% and 88.9%, respectively.
Our results demonstrate that the proposed feature selection tech-
nique can effectively improve the prediction performance.

3.2. Comparison with other methods

Since there is no other published work to predict the types of
ion channels-targeted conotoxins, we cannot provide the
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Fig. 1. The 3D curve for confidence level, feature dimension and overall accuracy.
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comparison analysis with published results to confirm that the
predictive model proposed here is superior to other methods. For
the purpose of comparison, we compared the performance of the
method with the performances of the random forest, naïve Bayes
and SVM algorithm. Firstly, we repeated the feature selection pro-
cess in which binomial distribution was adopted to optimize
dipeptides. Secondly, each feature set was input into the three
algorithms. Finally, the maximum accuracies of three algorithms
were selected for comparison. Results listed in Table 1 show that
the overall accuracies of random forest, naïve Bayes and SVM are
75.9%, 85.7% and 87.5%, respectively, which are lower than the
accuracy obtained through RBF network. Besides, the number of
features utilized in RBF network is only 70. The number is dramat-
ically less than those used through other three algorithms (143-D,
184-D and 180-D, respectively), indicating that the RBF network-
based model is more robust. But, we should note that the SVM
can achieve maximum sensitivity (93.3%) for Ca-conotoxin and
that naïve Bayes can achieve maximum sensitivity (90.7%) for
Na-conotoxin.

The PseAAC is a popular parameter and has been widely applied
in protein classification and prediction (Chen et al., 2006; Chou,
2001; Xiao et al., 2006). Because it has successfully improved pre-
diction quality in diverse protein predictions (Chou, 2011; Hayat
et al., 2012; Huang et al., 2011; Xiao et al., 2011), we also examined
the accuracies of RBF network, random forest, naïve Bayes and SVM
by use of PseAAC. The parameters of PseAAC, x and k, are opti-
mized by jackknife cross-validation. Comparison indicates that
our method is better than the other prediction methods of ion
channel-targeted conotoxins.

3.3. Evaluation on independent dataset

Moreover, for the purpose of further evaluating the perfor-
mance of the proposed method, we used 77 independent conotox-
ins with experimentally-confirmed function to examine the
method. As a result, 66 conotoxins were correctly predicted by
the proposed method. The predicted successful rates of K+, Na+

and Ca+ channel-targeted conotoxins are 91.7%, 80.5% and 91.7%,
respectively. These results further demonstrate the excellent per-
formance of our model.

3.4. Prediction of function-undefined conotoxins

The above investigation proves that the proposed method has
the ability to predict the types of ion channel-targeted conotoxins
with a high accuracy. Thus, we utilized the present model to pre-
dict 336 function-undefined mature conotoxins derived from the
UniProt Database. The numbers and percentages of the predicted
types of conotoxins are shown in Table 2. According to Table 2,
30.06%, 30.06% and 39.88% conotoxins are predicted to Na, K and
Ca ion channel-targeted conotoxins, respectively. These predic-
tions redound to further experimental research and can be freely

accessed from our web server (http://cobi.uestc.edu.cn/people/
hlin/data/conotoxin/).

4. Discussion

The number of newly identified conotoxins is growing fast,
while their functional characterization is lagging (Tan et al.,
2003). Although a significant experimental effort can provide sys-
tematic functional study of one individual conotoxin or even small
groups of toxins, systematic functional study is extremely time-
consuming and costly. It is increasingly difficult to study them with
wet-experimental method alone. Bioinformatics offers a promising
and efficient methodology for the analysis of the in silico possible
functions of new conotoxins and the acceleration of the in vitro
screening of potential conotoxin candidates. Therefore, we con-
structed a prediction model to identify the types of ion channel-
targeted conotoxins. Through optimizing features with binomial
distribution theory and utilizing RBF network in the prediction,
high prediction accuracy was obtained. The model may become
the important tool for analysis of these pharmacologically impor-
tant peptides. And the predicted results on the function-undefined
conotoxins may improve relevant research in the assistance of
selection and design of critical laboratory experiments.

In pattern recognition, feature selection technique plays an
important role in improving the accuracy of the model. In this study,
we adopted the binomial distribution to optimize dipeptides.
Although the statistical method can pick out over-represented
dipeptides, it cannot directly provide the correlation information be-
tween two dipeptides. Hybridizing different parameters to represent
sequence is an important and popular strategy for improving predic-
tive accuracy. However, for the dimensions of different kinds of fea-
tures are different, our proposed strategy is limited in dealing with
hybrid parameters selection. In the future, we will develop an ap-
proach of cascade prediction combined with binomial distribution
to further improve the performance of the model.

In summary, we introduced a novel method to identify the
types of ion channel-targeted conotoxins only using primary se-
quence information. The binomial distribution can fully utilize
the important features of different types of conotoxins. High pre-
dicted accuracies demonstrate that the proposed model is an effec-
tive tool to predict K+, Na+ and Ca+ channel-targeted conotoxins.
Thus, this method will become a useful tool for conotoxin analysis
and further experimental research.
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