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a b s t r a c t

Peroxidases as universal enzymes are essential for the regulation of reactive oxygen species levels and
play major roles in both disease prevention and human pathologies. Automated prediction of functional
protein localization is rarely reported and also is important for designing new drugs and drug targets. In
this study, we first propose a support vector machine (SVM)-based method to predict peroxidase subcel-
lular localization. Various Chou’ pseudo amino acid descriptors and gene ontology (GO)-homology pat-
terns were selected as input features to multiclass SVM. Prediction results showed that the smoothed
PSSM encoding pattern performed better than the other approaches. The best overall prediction accuracy
was 87.0% in a jackknife test using a PSSM profile of pattern with width = 5. We also demonstrate that the
present GO annotation is far from complete or deep enough for annotating proteins with a specific
function.

� 2014 Elsevier Inc. All rights reserved.
Peroxidases are ubiquitous enzymes that catalyze a number of
oxidative reactions by using various peroxides as electron accep-
tors [1,2]. These peroxidase proteins are central elements of the
antioxidant defense system, which are extremely widespread in
almost all microorganisms and higher organisms. They are essen-
tial for the regulation of reactive oxygen species levels and for
the promotion of various substrates’ oxidation [3–5]. There has
been increased interest in them over the past few years; for exam-
ple, the mammalian heme peroxidase enzymes play major roles in
both disease prevention and human pathology defense [6,7].
Therefore, knowing the localization of peroxidase proteins will be
important for disease prevention and human pathologies.

Proteins in various subcellular locations play distinct roles in
biological processes, such as triggering programmed cell death.
Protein localization may be used as a starting point for function
prediction systems. Knowing a protein’s localization is an impor-
tant step toward understanding its function [8,9]. Experimental
and computational methods are two very important methods for
annotating protein functional information. During the past 2 dec-
ades, a substantial amount of bioinformatics work for predicting
protein subcellular location has been carried out and rapidly devel-
oped; significant progress has been achieved with the establish-
ment of various organism-specific benchmark datasets [10–15].
However, to the best of our knowledge, there are few theoretical
methods for localization prediction for proteins of specific
function.

Therefore, it is becoming crucial to develop a reliable automatic
subcellular localizer for identifying the locations of functional pro-
teins. In this study we first attempted to annotate the subcellular
localization of a specific oxidoreductase, peroxidase, by using a
computational method based on state-of-the-art features. Several
different descriptors of the Chou’ pseudo amino acid pattern have
been discussed for localization prediction [16–21], including
amino acid composition (AAC) [22], dipeptide composition (DC)
[23,24], split amino acid composition (SAAC) [25], evolutionary
information (PSSM) [10,26–28], and gene ontology (GO) of homol-
ogous proteins [29–32]. All of the above features were selected as
input parameters to established an automatic subcellular classifier.
The best overall prediction accuracy achieved 87.0% in a jackknife
test for eight locations by using a PSSM profile with width = 5. The
GO-homology annotation with different sequence identities was
also discussed; the evaluation results showed the present GO
annotation is far from complete or deep enough for accurately
annotating the localization of peroxidase proteins.
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Materials and methods

Benchmark datasets

The data of peroxidase proteins used in this research were
extracted from the PeroxiBase database [33]. PeroxiBase is a
unique specialized database, which is devoted to established com-
prehensive peroxidase families and superfamilies from both
eukaryotes and prokaryotes. More than 10,000 peroxidase-encod-
ing sequences come from 940 organisms, and each sequence is
individually annotated in this database. Since the number of mul-
tiplex proteins in the existing database is not large enough to con-
struct a statistically meaningful benchmark dataset for studying a
case of multiple locations, only the proteins with singleplex loca-
tions were used in this experiment, and every protein is character-
ized by an expert sequence annotation procedure, with manual
curation, which is a guarantee of quality necessary for performing
subcellular localization analysis. After the redundant sequences
were removed using the CD-HIT algorithm [34], 586 nonredundant
peroxidase proteins were obtained. According to the annotation
information, these defensin sequences can be classified into eight
subcellular locations: apoplastic (30), chloroplastic (44), cytosolic
(265), mitochondrial (44), peroxisomal (107), secreted (23), stro-
mal (37), and thylakoid (37). After measuring by the CD-HIT pro-
gram, most of the protein similarity scores in each family were
lower than 80%.
Features and modules

Support vector machine (SVM), as a strong machine learning
technique, is used to evaluate various alternative features of our
work. SVM is a machine learning algorithm based on statistical
learning theory, which has been successfully used for classification
[35]. The basic idea of SVM is to transform the data into a high-
dimensional feature space and then determine the optimal sepa-
rating hyperplane by using a kernel function. In this work, we used
the free software LIBSVM to predict peroxidase protein location. A
radial basis function (RBF) was chosen as the kernel function. For
multiclassification, SVM uses a one-versus-one strategy and con-
structs k � (k � 1)/2 classifiers and voting strategy to assign the
class for an arbitrary protein sequence. Here various features of a
protein sequence were utilized to perform a comprehensive study
and achieve maximum accuracy.
PSSM profile of patterns

Evolutionary conservation usually reflects important biological
function. An amino acid at a conserved site of a protein is preferred
to locate at a functionally important region [36]. PSI-BLAST is a
robust measure of residue conservation in a given location. Evolu-
tionary information on protein sequences like PSSM can be created
using a PSI-BLAST search. Compared to the compositional informa-
tion, the PSSM profile provides more important information of evo-
lutionary significance about residue conservation at a given
position in a protein sequence [31,37]. In this study, the PSSM
was generated using the PSI-BLAST search with a cutoff E value
of 0.001 against the Swiss-Prot database.

The PSSM provides a matrix of dimension L rows and 20 col-
umns for a protein chain with L amino acid residues, where 20 col-
umns represent the occurrence/substitution of each type of 20
amino acids [38]. We summed all of the rows in the PSSM corre-
sponding to the same amino acid in the sequence and then divided
each element by the length of the sequence. In the prediction of
peroxidase location, we used PSSM profiles with different
similarities to generate 400 dimension (20 � 20 residue pairs)
input vectors as parameters.
Composition profile of patterns

The aim of calculating the protein composition is to transform
the variable lengths of the protein sequence to fixed-length vec-
tors. This is an important and crucial step for protein classification
using a computational approach because it requires a fixed-length
pattern.
Amino acid and dipeptide compositions

The AAC representation of a given sequence is composed of 20
different amino acids with a variety of shapes, sizes, and chemical
properties. A protein can be represented as a 20-dimensional (20D)
vector according to AAC [22]. DC is the occurrence frequency of
each of 2 adjacent amino acid residues. It is used to encapsulate
the global information of each protein sequence, and a protein
can be represented as a 400D vector by means of DC [39–41]. In
this study, the AAC and DC of the N-part split amino acid composi-
tion were selected as classification vectors.
Split amino acid composition

In simple amino acid-, dipeptide-, and pseudo amino acid-based
compositions, the composition is taken at once for the whole
sequence, whereas in the split amino acid composition model,
the protein sequence is divided into different parts and the compo-
sition of each part is calculated separately [25]. The composition is
taken independently for the N parts of the protein sequence [42].
Hence, the advantage of SAAC over standard AAC is that it provides
a greater weight of compositional biasness to proteins that have a
signal at different sequence regions. In our SAAC model each pro-
tein is divided into 1 to 10 parts to train the optimal parameter
combination for the SVM program.
Gene ontology profile of patterns

Gene Ontology is one of the databases that describes molecular
function, and the molecular function of the GO database is corre-
lated to the subcellular location [43]. Accordingly, protein
sequences formulated in the GO database space would be clustered
in a way that better reflects their subcellular locations [29]. How-
ever, to incorporate more information, instead of using only 0 and
1 element, as done in Ref. [44], here let us use a different approach
as described below.

First, we searched for the homologous proteins of protein P
from the Swiss-Prot database (released on 5 September 2012)
using the PSI-BLAST method, with the expected value E 6 0.001
for the BLAST parameter [31]. Second, we collected those proteins
that had P60% pairwise sequence identity with protein P into a
subset, Phomo, called the ‘‘homology set’’ of P. All the elements in
Phomo could be deemed the ‘‘representative proteins’’ of P, sharing
some similar attributes such as structural conformation and bio-
logical function. These representative proteins retrieved from the
Swiss-Prot database must each have their own accession number.
Third, we searched each of the accession numbers collected in
the second step against the GO database to find the corresponding
GO number. Last, we statistically analyzed each coordinate of the
vector and found that many of the coordinates were equal to 0.
This denoted that certain GOs did not belong to any protein; these
GOs were eliminated, and the dimension of the GO feature vector
was decreased in this manner.



Fig.1. The prediction result with respect to various window sizes based on the
jackknife test. The blue triangle indicates the accuracy based on the PSSM profile of
20 amino acids (PSSM_20). The red dot indicates the accuracy based on the PSSM
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Performance measures

The prediction performance was evaluated by the sensitivity
(Sn), specificity (Sp), positive predictive value (PPV), and overall
accuracy (OA), which were defined as follows:

(a) sensitivity or coverage of positive examples, Sn = TPi/
(TPi + FNi);
(b) specificity or coverage of negative examples, Sp = TNi/
(TNi + FPi);
(c) positive predictive value or confidence of positive examples,
PPV = TPi/(TPi + FPi);
(d) overall accuracy, OA =

P
i(TPi + TNi)/

P
i(TPi + FNi + TNi + FPi);

where TPi is the number of observed positive samples predicted to
be positive samples, TNi is the number of observed negative sam-
ples predicted to be negative samples, FNi is the number of
observed positive samples predicted to be negative samples, and
FPi is the number of observed negative samples predicted to be
positive samples.
profile of 400 dipeptides (PSSM_400). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 1
The performance of jackknife validation for the PSSM profile of patterns.

PSSM (400) PSSM (20)

Sn Sp PPV Sn Sp PPV

Apoplastic 76.7 98.7 76.7 63.3 98.2 65.5
Chloroplastic 63.6 98.7 80.0 65.9 97.2 65.9
Cytosolic 95.1 91.3 90.0 92.0 87.3 85.6
Mitochondrial 84.1 99.4 92.5 75.0 98.3 78.6
Peroxisomal 91.6 97.1 87.5 80.4 96.5 83.5
Secreted 56.5 99.5 81.3 56.5 99.5 81.3
Stromal 86.5 98.0 74.4 64.9 98.0 68.6
Thylakoid 75.7 99.5 90.3 64.9 98.4 72.7
Accuracy 510/586 = 87.0% 471/586 = 80.4%
Result and discussion

Evaluation

In statistical prediction, three cross-validation methods, inde-
pendent dataset test, subsampling test, and jackknife test, are often
used to examine a predictor for its effectiveness in practical appli-
cation [45]. The jackknife test is deemed the most objective that
can always yield a unique result for a given benchmark dataset
and hence has been increasingly used by investigators to examine
the accuracy of various predictors [10–15,46]. During the jackknife
test, each protein is singled out in turn as a test sample, the
remaining proteins are used as a training set to calculate the test
sample’s membership and predict the class. Therefore, we adopted
the jackknife validation in this study.
Performance evaluation of evolutionary information-based PSSM
patterns

Each protein in the dataset of peroxidase proteins can be trans-
lated into a group of numerical vector representations. In this sec-
tion, our initial vector set was based on evolutionary information
for the PSSM 20 amino acid (PSSM_20) and the PSSM 400 dipeptide
(PSSM_400). We trained the SVM classifier on the dataset with dif-
ferent sequence similarities (80–90%). The lower similarity crite-
rion was not to be accepted, because the currently available data
do not allow us to do so. The numbers of proteins for some subsets
would have been too few to have statistical significance.

To achieve the best performance for predicting subcellular loca-
tion, the sliding window size was optimized with respect to the
overall accuracy. The optimized sliding window size was obtained
by testing the performance of various sliding window sizes with
the default parameters in SVM. Fig. 1 shows the results of various
sliding window sizes on the original dataset. It was found that a
sliding window of five amino acids achieved the best predicting
performance for the PSSM_400 pattern. It is indicated that consid-
eration of correlation between neighboring residues can signifi-
cantly enhance prediction accuracy. The evaluation details are
described in Table 1. From the results shown in Table 1, we can
see that the evolutionary information is indeed a good sequence
feature for describing peroxidase subcellular location. The predic-
tion overall accuracy based on the 400 dipeptide profile achieved
87.0%. For the protein localization of cytosolic, mitochondrial,
and thylakoid, both the Sn and the PPV were higher than 90%.
Therefore, the optimized sliding window size was set to 5 in the
following comparison.

Comparison with other methods

It is objective to compare the proposed methods with previ-
ously published classifiers using the same dataset and the same
parameters. Since there is no published work to predict the perox-
idase subcellular location, we cannot provide the comparison anal-
ysis with published results to confirm that the predictive model
proposed here is superior to other methods. For the purpose of
comparison, we compared the performance of the method with
some of other classical approaches, Logistic Function, RBFNetwork,
NaiveBayes, LogitBoost, and J48, which trained by using Waikato
Environment for Knowledge Analysis [47] on the benchmark data-
set (Table 2). The results in Table 2 show that prediction accuracy
obtained by our method based on the PSSM_400 profile achieved
87.0%, about 10% higher than the other methods, which suggests
our proposed method is a state-of-the-art method for subcellular
location of peroxidase protein.

Performance evaluation of different SAAC-based approaches

In this section, we investigate how a particular part of the pro-
tein sequence affects the prediction accuracy and determine the
optimal amount of information needed for peroxidase subcellular
location. In our SAAC model, each protein was divided into 1 to
10 parts to discuss the prediction performance of the SVM pro-



Table 2
Comparison of SVM with other machine learning methods based on the PSSM_400 pattern.

Apo Chl Cyt Mit Per Sec Stro Thy Ac

SVM (400, W = 5) 76.7 63.6 95.1 84.1 91.6 56.5 86.5 75.7 87.0
SVM (400, W = 5) 63.3 65.9 92.0 75.0 80.4 56.5 64.9 64.9 80.4
SVM (400 DP) 76.7 75.0 92.8 75.0 89.7 56.5 86.5 75.7 85.9
SVM (20 DP) 70.0 54.5 92.5 68.2 88.8 56.5 67.6 70.3 81.6
Logistic function (400, W = 5) 70.3 59.0 60.0 82.7 75.6 86.1 51.6 65.5 78.0
RBFNetwork (400, W = 5) 60.5 63.6 27.8 83.2 73.0 82.1 44.2 60.0 72.0
NaiveBayes (400, W = 5) 63.0 65.2 32.4 84.0 67.4 92.8 52.2 45.8 74.1
LogitBoost (400, W = 5) 80.0 61.4 60.0 76.3 63.6 78.7 65.8 63.6 74.2
J48 (400, W = 5) 70.3 46.5 30.6 69.5 38.0 84.0 45.9 53.6 66.4

The bold values show the best results. W, width; Apo, apoplastic; Chl, chloroplastic; Cyt, cytosolic; Mit, mitochondrial; Per, peroxisomal; Sec, secreted; Stro, stromal; Thy,
thylakoid; Ac, accuracy.
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gram. The amino acid composition and dipeptides were calculated
as SVM parameter vectors to predict subcellular location. Fig. 2
shows the prediction results of overall accuracy based on K-pep-
tide compositions of N split parts (N, K).

As is shown in Fig. 2, the overall accuracy reached a maximum
of 85.9% based on a 2-peptide composition of N = 4 or N = 5. When
N = 2, the prediction overall accuracy using amino acid composi-
tion performed the best (N = 2, K = 1). For different values of N, it
was shown that the prediction ability increases along with the N
increase, up to the peak at which N equals 4 or 5, and decreases
when N > 6. This indicates that the split amino acid composition
indeed provides greater weight of compositional biasness to pro-
teins that have a signal at different sequence regions.
Fig.2. Prediction results of different SAAC-based approaches. The gray bar indicates
the accuracy based on 1-peptide compositions (K = 1). The red bar indicates the
accuracy based on 2-peptide compositions (K = 2). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Performance evaluation based on GO-homology patterns with different sequence similarit

40% (424 GO) 50% (375 GO) 60% (330

Apoplastic 70.0 73.3 73.3
Chloroplastic 52.3 52.3 36.4
Cytosolic 90.8 84.7 93.1
Mitochondrial 56.8 84.1 84.1
Peroxisomal 22.4 65.4 25.2
Secreted 21.7 21.7 43.5
Stromal 5.6 58.3 2.8
Thylakoid 0.0 46.0 94.6
Accuracy 58.0 71.5 67.2

The bold values show the best results.
Performance evaluation based on gene ontology patterns of
homologous protein

The property derived from the amino acid sequence performs
poorly for a dataset with low-similarity sequences [31]. GO is
another very important feature for prediction of subcellular local-
ization. The GO-based methods make use of the well-organized
biological knowledge about genes and gene products in the GO
database [48]. Recently GO annotation has been used successfully
to solve various sequence-based prediction problems and to
extract many other important features of proteins. In this study,
we propose an efficient GO method called GO-homology to repre-
sent a protein in the general form of Chou’ pseudo amino acid com-
position [30]. The GO-homology method first selects a subset of
relevant GO terms to form a GO vector space. Then for each pro-
tein, the method calculates the occurrence accession number in a
subset of the selected homologous proteins as a means to construct
GO vectors for predicting subcellular location.

This study also evaluated how the sequence identity annotated
in the Swiss-Prot database affects the prediction performance of
the GO-homology method. Table 3 shows the prediction results
of different sequence identities (80–90%). The GO patterns of
homologous proteins with 50 and 70% similarity performed better
than the other homologous GO patterns. The best overall accuracy
based on 375 GO annotations achieved 71.5%. However, the predic-
tion ability was far lower than that of the PSSM pattern. There may
be two reasons for this result: (1) for the specific function proteins,
most of the peroxidase proteins with different subcellular localiza-
tions contain GO annotations that are too similar to discriminate.
So the GO patterns of homologous protein methods do not have
the ability to clearly classify the different subcellular localizations.
(2) For the accession numbers available in the Swiss-Prot database,
the current GO annotation is far from complete for specific func-
tions. Most of the proteins still cannot be clearly formulated in
the GO space. The above results demonstrate that the GO pattern
method of homologous proteins is not suitable for annotating the
localization of peroxidase proteins.
ies.

GO) 70% (375 GO) 80% (277 GO) 90% (261 GO)

40.0 33.3 40.0
40.9 27.3 29.6
96.6 95.0 96.2
72.7 56.8 50.0
72.9 53.3 18.7
30.4 0.0 0.0

0.0 52.8 16.7
24.3 51.4 5.4
70.2 67.1 56.1
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Conclusion

Using bioinformatics techniques to identify the subcellular
localization from a given primary sequence is one of the active
areas in protein classification [49]. However, only a few computa-
tional methods have been developed for specific functions of pro-
teins. In this study, a benchmark dataset of the subcellular
location of peroxidase proteins was first constructed. Then we pro-
posed an SVM-based method to predict subcellular localization
using many different descriptors of the Chou’ pseudo amino acid
profile of patterns. Evaluation results also showed that the predic-
tion performance of smoothed PSSM encoding performed better
than the state-of-the-art approaches on the benchmark datasets.
The PSSM profile of patterns achieved the best performance. We
also demonstrated that the present GO annotation is far from com-
plete or deep enough for classifying proteins with specific func-
tions, such as peroxidase proteins.
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