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Abstract: Ion channels (IC) are ion-permeable protein pores located in the lipid membranes of all
cells. Different ion channels have unique functions in different biological processes. Due to the
rapid development of high-throughput mass spectrometry, proteomic data are rapidly accumulating
and provide us an opportunity to systematically investigate and predict ion channels and their
types. In this paper, we constructed a support vector machine (SVM)-based model to quickly
predict ion channels and their types. By considering the residue sequence information and their
physicochemical properties, a novel feature-extracted method which combined dipeptide composition
with the physicochemical correlation between two residues was employed. A feature selection
strategy was used to improve the performance of the model. Comparison results of in jackknife
cross-validation demonstrated that our method was superior to other methods for predicting ion
channels and their types. Based on the model, we built a web server called IonchanPred which can
be freely accessed from http://lin.uestc.edu.cn/server/IonchanPredv2.0.
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1. Introduction

Ion channels are pore-forming membrane proteins for the transmembrane exchange of inorganic
ions (as shown in Figure 1). Ion channels exist in the membranes of all cells and are required
in numerous physiological and pathological processes, such as regulating neuronal and cardiac
excitability, muscle contraction, hormone secretion, fluid movement, and immune cell activation [1].
Due to their important role in biological processes, ion channels are often used as targets for disease
diagnosis and drug development. There are over 300 types of ion channels in living cells [2], and
they differ in their structure and function. According to the different gating mechanisms, the ion
channels can be mainly divided into two categories, namely voltage-gated ion channels (VGIC) and
ligand-gated ion channels (LGIC) [3]. The opening and closing of the voltage-gated ion channels
depends on the change of the membrane potential, whereas the state of the ligand channels is closely
related to the binding of the ligand. The voltage-gated ion channels can be further classified into the
following four subclasses: potassium (K+), sodium (Na+), calcium (Ca2+), and anion channels.
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Figure 1. Schematic diagram of material exchange through ion channels. 

In view of the important role and multiple types of ion channels, the structures and functions of 
ion channels have continued to attract the attention of numerous researchers in recent years [4–10]. 
Due to the rapid growth of proteomic data, it is particularly important to develop bioinformatics tools 
to quickly predict and identify ion channels and their types. Consequently, many computational 
methods based on machine learning algorithm have been developed in the last 10 years [11–17]. Liu 
et al. [11] proposed a method to identify voltage-gated potassium channels, and indicated that the 
local sequence information-based method was better than the global sequence information-based 
method. Saha et al. [12] developed a support vector machine (SVM)-based method by using amino 
acid composition and dipeptide composition to predict voltage-gated ion channels and their 
subtypes. In 2011, our group [13] developed a more generalized predictive tool, called IonchanPred, 
and identified ion channels and their types accurately. Recently, Tiwari et al. [16] proposed a random 
forest based methods and Gao et al. [17] proposed a model to predict ion channels and their 
subfamilies by combining a SVM-based model with BLAST sequence similarity search. Although 
many predictors for identifying ion channels are available, three essential issues remain elusive. 
Firstly, the use of high similarity sequences may overestimate the performance of a model. Secondly, 
the long-range effect is lost in most published models. Thirdly, web servers should be improved. 

In this paper, a support vector machine-based model was constructed to quickly identify ion 
channels and their types. In this model, a novel feature extraction method called pseudo-dipeptide 
composition was employed. The analysis of variance (ANOVA) [18] was introduced to rank features. 
The incremental feature selection (IFS) was employed to find an optimized feature set which can 
produce the maximum accuracy. Finally, a web server called IonchanPred 2.0 was established. The 
flow chart is shown in Figure 2. 
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In view of the important role and multiple types of ion channels, the structures and functions of
ion channels have continued to attract the attention of numerous researchers in recent years [4–10].
Due to the rapid growth of proteomic data, it is particularly important to develop bioinformatics
tools to quickly predict and identify ion channels and their types. Consequently, many computational
methods based on machine learning algorithm have been developed in the last 10 years [11–17].
Liu et al. [11] proposed a method to identify voltage-gated potassium channels, and indicated that
the local sequence information-based method was better than the global sequence information-based
method. Saha et al. [12] developed a support vector machine (SVM)-based method by using amino
acid composition and dipeptide composition to predict voltage-gated ion channels and their subtypes.
In 2011, our group [13] developed a more generalized predictive tool, called IonchanPred, and
identified ion channels and their types accurately. Recently, Tiwari et al. [16] proposed a random forest
based methods and Gao et al. [17] proposed a model to predict ion channels and their subfamilies by
combining a SVM-based model with BLAST sequence similarity search. Although many predictors for
identifying ion channels are available, three essential issues remain elusive. Firstly, the use of high
similarity sequences may overestimate the performance of a model. Secondly, the long-range effect is
lost in most published models. Thirdly, web servers should be improved.

In this paper, a support vector machine-based model was constructed to quickly identify ion
channels and their types. In this model, a novel feature extraction method called pseudo-dipeptide
composition was employed. The analysis of variance (ANOVA) [18] was introduced to rank features.
The incremental feature selection (IFS) was employed to find an optimized feature set which can
produce the maximum accuracy. Finally, a web server called IonchanPred 2.0 was established. The
flow chart is shown in Figure 2.
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Figure 2. Workflow of the IonchanPred 2.0 model. 

2. Results and Discussion 
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The establishment of our proposed model depends on two important parameters: ߣ and ߱. ߣ 
factor denotes the rank of correlation and the larger ߣ may contain more global sequence-order 
information. ߱  represents the weight of the correlation of residues’ physiochemical properties 
compared to the traditional dipeptide component. To obtain the optimal value for the two 
parameters, a serial of experiments was performed according to the following standard: ൜ 1 ≤ ߣ ≤ 30 with step Δ = 10.05 ≤ ߱ ≤ 0.70 with step Δ = 0.05 (1)

In view of this, a total of 30 ൈ 14 = 420 individual combinations were obtained. Then, we can 
investigate the accuracy of SVM with the jackknife test. The optimal parameter combinations 
corresponding to the three individual datasets are shown in Table 1. It shows that the highest overall 
accuracy can be up to 87.5% when ߣ = 21 and ߱ = 0.20 for the dataset including ion channels and 
non-ion channels (NIC). For the benchmark dataset VGIC vs. LGIC, the maximum accuracy is 93.9% 
when ߣ = 7 and ߱ = 0.30. The best model for four types of VGIC prediction can produce overall 
accuracy of 89.1%. After the parameters are optimized, the samples for the three individual datasets 
can be respectively formulated as follows: a 589-dimensional vector involving 400 dimensions for 
traditional dipeptide composition and 9 ൈ 21 = 189 dimensions for correlation information for IC 
vs. NIC prediction, a vector involving 400 + 9 ൈ 7 = 463 dimensions for VGIC vs. LGIC, and a 
vector involving 400 + 9 ൈ 9 = 481  dimensions for four types of voltage-gated ion channels 
datasets. 

Figure 2. Workflow of the IonchanPred 2.0 model.

2. Results and Discussion

2.1. Parameter Optimization

The establishment of our proposed model depends on two important parameters: λ and ω. λ

factor denotes the rank of correlation and the larger λ may contain more global sequence-order
information. ω represents the weight of the correlation of residues’ physiochemical properties
compared to the traditional dipeptide component. To obtain the optimal value for the two parameters,
a serial of experiments was performed according to the following standard:{

1 ≤ λ ≤ 30 with step ∆ = 1
0.05 ≤ ω ≤ 0.70 with step ∆ = 0.05

(1)

In view of this, a total of 30 × 14 = 420 individual combinations were obtained. Then, we
can investigate the accuracy of SVM with the jackknife test. The optimal parameter combinations
corresponding to the three individual datasets are shown in Table 1. It shows that the highest overall
accuracy can be up to 87.5% when λ = 21 and ω = 0.20 for the dataset including ion channels and
non-ion channels (NIC). For the benchmark dataset VGIC vs. LGIC, the maximum accuracy is 93.9%
when λ = 7 and ω = 0.30. The best model for four types of VGIC prediction can produce overall
accuracy of 89.1%. After the parameters are optimized, the samples for the three individual datasets
can be respectively formulated as follows: a 589-dimensional vector involving 400 dimensions for
traditional dipeptide composition and 9× 21 = 189 dimensions for correlation information for IC vs.
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NIC prediction, a vector involving 400 + 9× 7 = 463 dimensions for VGIC vs. LGIC, and a vector
involving 400 + 9× 9 = 481 dimensions for four types of voltage-gated ion channels datasets.

Table 1. Optimal parameters for the three datasets.

Database λ ω OA (%)

IC vs. NIC 21 0.20 87.5
VGIC vs. LGIC 7 0.30 93.9

four types of VGIC 9 0.15 89.1

IC: ion channels; NIC: non-ion channels; VGIC: voltage-gated ion channels; LGIC: ligand-gated ion channels; OA:
overall accuracy.

2.2. Model Establishment

In order to further improve the accuracy, we used ANOVA to exclude noise or redundant
information. After the feature selection, the features were sorted according to the decreasing order
of the F values described in Section 3.3 Feature Selection to obtain the feature list. Then, we used the
IFS to determine the optimal number of features, as described below. The feature subset starts from a
feature ranking first in the feature list. A new feature subset was composed when the second feature of
this list was added. We repeated this process until all candidate features were added. In this case, we
obtained 589, 463, and 535 feature subsets, respectively, for the three benchmark datasets mentioned
above. The performance of each feature subset was examined by using SVM with the jackknife test.
We plotted the relationship between the overall accuracy and the numbers of features in Figure 3. We
noticed that the prediction performances were the best when the top ranked 527, 460, and 147 features
were used for the three datasets, respectively.
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Figure 3. The feature selection results for three independent datasets. (a) Incremental feature selection
(IFS) curve for ion channel (IC) vs. non-ion channel (NIC) prediction; (b) IFS curve for voltage-gated
ion channels (VGIC) vs. ligand-gated ion channels (LGIC) prediction; (c) IFS curve for four types of
VGIC prediction.

In order to further evaluate the predictive performance of our model, we also calculated the
average accuracies for the three datasets. A comparison of the results with the previous model [13] are
shown in Table 2. It is clear that the predictive performance of our proposed model is better than the
previous model.



Int. J. Mol. Sci. 2017, 18, 1838 5 of 10

Table 2. Performance evaluation parameters of our proposed model and a previous model.

Datasets
Our Model Previous Model [13]

Sn OA AA Sn OA AA

IC vs. NIC
IC 80.2

87.8 87.8
85.9

86.6 86.6NIC 95.3 87.3

VGIC vs. LGIC
VGIC 94.7

94.0 94.0
94.6

92.6 92.7LGIC 93.2 90.7

Types of VGIC

K+ 97.5

92.6 87.7

92.6

87.8 83.7
Ca2+ 89.7 82.8
Na+ 75.0 75.0
An− 88.5 84.6

Sn: sensitivity; AA: average accuracy; OA: overall accuracy; IC: ion channels; NIC: non-ion channels; VGIC:
voltage-gated ion channels; LGIC: ligand-gated ion channels.

3. Materials and Methods

3.1. Benchmark Databases

The data used to establish the prediction model in this paper were collected from Lin et al. [13].
The sequences of ion channels were collected from the Universal Protein Resource (UniProt) [19] and
the Ligand-Gated Ion channel database [20]. To construct a high-quality benchmark dataset, some
sequences were removed according to three characteristics. Firstly, a sequence that contained some
ambiguous residues (such as “X”, “B”, “Z”). Secondly, a sequence that was the fragment of other
proteins. Thirdly, a sequence that was annotated based on homology or prediction. Then, redundant
sequences were removed by using the CD-HIT [21] program with a sequence identity threshold of
40%, which has been widely used to filter out redundant samples in genomics and proteomics [22–26].

After the raw data were preprocessed, we finally obtained 298 ion channels including 148
voltage-gated ion channels and 150 ligand-gated ion channels. These voltage-gated ion channels
can be classified into four subtypes as follows: 81 potassium (K+), 29 calcium (Ca2+), 12 sodium
(Na+), and 26 voltage-gated anion channels. Here, all the 300 non-ion channel proteins were randomly
selected from the membrane proteins which were not marked as ion channels in the UniProt database.
Moreover, any two sequences in these non-ion channels should guarantee that the identity between
them is less than 40%.

3.2. Feature Extraction of Samples

In order to characterize each protein sequence as accurately as possible, the order effect of sequence
was usually selected as a method for generating effective feature vectors. Therefore, PseAAC [27,28]
incorporating dipeptide composition was selected as the method for feature extraction of protein
samples in this paper.

Assuming that there is a protein sequence of L amino acid residues:

P = R1R2R3R4R5R6R7 . . . RL (2)

where Ri(i = 1, 2, 3 . . . L) represents the amino acid residue at i-th sequence position. Therefore, we
can get a set of feature vectors with the dimension of 400 + nλ from any sequence like Equation (1)

P = [P1, P2, . . . , P400, P401, . . . , P400+nλ]
T (3)

where the first 400 features P1, P2, . . . , P400 represent the effect of the classical dipeptide composition;
the nλ elements P400+1, P400+2, . . . , P400+nλ in addition to the 400 components represent the sequence
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order effect of protein samples, namely the first tier to λ-th tier correlation factors of protein sequence.
These features can be calculated by:

Pu =


fu

∑400
i=1 fi + ω ∑nλ

j=1 τj
(1 ≤ u ≤ 400)

ωτu

∑400
i=1 fi + ω ∑nλ

j=1 τj
(400 + 1 ≤ u ≤ 400 + nλ)

(4)

where fi(i = 1, 2, . . . , 400) is the normalized occurrence frequencies of the 400 dipeptides in protein P;
ω is the weight factor; τj (j = 1, 2, . . . , nλ) is the j-tier sequence-correlation factor computed by:

τ1 = 1
L−1

L−1
∑

i=1
H1

i,i+1

τ2 = 1
L−1

L−1
∑

i=1
H2

i,i+1

. . .

τn = 1
L−1

L−1
∑

i=1
Hn

i,i+1

τn+1 = 1
L−2

L−2
∑

i=1
H1

i,i+2

τn+2 = 1
L−2

L−2
∑

i=1
H2

i,i+2

. . .

τ2n = 1
L−2

L−2
∑

i=1
Hn

i,i+2

. . .

τnλ−1 = 1
L−λ

L−λ

∑
i=1

Hn−1
i,i+λ

τnλ = 1
L−λ

L−λ

∑
i=1

Hn
i,i+λ

(5)

where Hn
i,j is the correlation function of physicochemical properties and can be calculated as:

Hn
i,j = hn(Ri) · hn(Rj

)
(6)

where hn(Ri) denotes the value of n-th kind physicochemical property of Ri; hn(Rj
)

is similar. To
obtain the high-quality feature set, all the data of physicochemical properties must be subjected to a
standard conversion as below:

hk(Ri) =
hk

0(Ri)−∑20
α=1 hk

0(Rα)/20√
∑20

u=1

[
hk

0(Ri)−∑20
α=1 hk

0(Rα)/20
]2

(7)

where Ri(i = 1, 2, . . . , 20) represents the 20-native amino acid according to the alphabetical order of
their single-letter codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y. hk

0(Ri) denotes the
original value of the k-th physicochemical property for residue Ri. The values of each physicochemical
property obtained after the standard conversion have two advantages. These values will have a
zero-mean over the 20 native amino acids and remain unchanged if they are subjected to the same
conversion procedure again. The values of the nine kinds of physicochemical properties used in this
paper are from previous results [29].
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3.3. Feature Selection

Generally, all features do not equally contribute to an ion channel prediction system. Some
features make key contributions, whereas some others make minor contributions [30,31]. Therefore,
the selection of features is an important step for establishing an effective prediction model. To analyze
these feature vectors, ANOVA was used to choose the optimal feature sets in this paper.

In order to assess the contribution of each feature to the predictive system, the F value was defined
as follows:

F(λ) =
S2

B(λ)

S2
W(λ)

(8)

where S2
B(λ) and S2

W(λ) respectively denote the sample variance between groups (also called means
square between, MSB) and the sample variable within groups (also called means square within, MSW),
and are expressed as:

S2
B(λ) =

∑K
i=1 ni(∑

ni
j=1 fij(λ)/ni −∑K

i=1 ∑ni
j=1 fij(λ)/ ∑K

i=1 ni)
2

K− 1

S2
W(λ) =

∑K
i=1 ∑ni

j=1 ( fij(λ)−∑K
i=1 ∑ni

j=1 fij(λ)/ ∑K
i=1 ni)

2

N − K

(9)

where K and N respectively denote the number of groups and the total number of samples. fij(λ)

represents the frequency of the λ-th feature of the j-th sample in the i-th group. ni denotes the total
number of samples in the i-th group. Thus, each feature corresponds to an F score.

Obviously, the larger F value means the greater contribution of the corresponding feature to the
classification. Thus, according to their F values, we may rank all features. Subsequently, we used
the incremental feature selection (IFS) to determine the optimal number of features [32]. Firstly, we
examined the accuracy of the first feature subset including a feature with the highest F value in the
ranked feature set. Secondly, we investigated the accuracy of the second feature subset which was
produced by adding the feature with the second highest F value. This process was repeated from the
higher F to the lower F value until all candidate features were added. The performances of all feature
subsets were evaluated. Then, we were able to obtain the best feature subset which was capable of
producing the maximum accuracy.

3.4. Support Vector Machine

SVM is a kind of classification algorithm that can improve the generalization ability of machine
learning and achieve the minimization of experience risk and confidence scope by minimizing the
structural risk. Therefore, a good statistical result can be usually achieved even using a small sample.
SVM, as a powerful supervised learning method, has been widely used in various fields including
bioinformatics [33–38]. In this paper, we used LIBSVM 3.21 [39] which could be freely downloaded
from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The radial basis function (RBF) kernel was selected
as kernel function and one vs. one (OVO) strategy was used for multiclass classification. For achieving
the optimal model, the penalty constant C and the kernel width parameter λ were tuned by an
optimization procedure with a grid search method [39]. The search spaces for C and λ were [2−5, 215]
and [25, 2−15] with steps being 2 and 2−1, respectively.

3.5. Performance Evaluation

A cross-validation technique is generally employed to estimate the accuracy of a predictive model.
Three cross-validation methods including the independent dataset test, subsampling test, and jackknife
test can be used [40–43]. Among them, the jackknife test is considered to be the most objective and
rigorous one. Therefore, the jackknife test was employed to assess the performance of our methods.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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In addition, we also used other assessment criteria to evaluate the effectiveness of our predictive
model in this paper. These assessment criteria, including sensitivity (Sn), overall accuracy (OA), and
average accuracy (AA), are defined as follows:

Sn(i) =
TPi

TPi + FNi
(10)

OA = ∑n
i=1

TPi
N

(11)

AA = ∑n
i=1

Sn(i)
n

(12)

where TPi and FNi respectively denote true positives and false negatives of the i-th class. N and n
represent the total number of samples and number of classes, respectively.

4. Conclusions

We constructed an SVM-based model for the accurate prediction of ion channel proteins and
their types. In this model, a pseudo-dipeptide composition was adopted to extract features. The
ANOVA was used to exclude noise or redundant information of feature vectors and then IFS was
employed to determine the optimal number of features. High accuracies indicated that the proposed
method was an effective tool for predicting ion channels and their types. A free web server based on
the proposed method presented in this paper has been constructed and is accessible at the website
(http://lin.uestc.edu.cn/server/IonchanPredv2.0).

Acknowledgments: This work was supported by the Applied Basic Research Program of Sichuan Province
(No. 2015JY0100 and 14JC0121), the Fundamental Research Funds for the Central Universities of China (Nos.
ZYGX2015J144; ZYGX2015Z006; ZYGX2016J118; ZYGX2016J125; ZYGX2016J126), Program for the Top Young
Innovative Talents of Higher Learning Institutions of Hebei Province (No. BJ2014028), the Outstanding Youth
Foundation of North China University of Science and Technology (No. JP201502), China Postdoctoral Science
Foundation (No.2015M582533), and the Scientific Research Foundation of the Education Department of Sichuan
Province (11ZB122).

Author Contributions: Hao Lin, Wei Chen, and Hua Tang conceived and designed the experiments; Ya-Wei Zhao
performed the experiments; Ya-Wei Zhao analyzed the data; Ya-Wei Zhao and Zhen-Dong Su contributed
reagents/materials/analysis tools; Ya-Wei Zhao, Wuritu Yang, and Hao Lin wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wulff, H.; Christophersen, P. Recent developments in ion channel pharmacology. Channels 2015, 9, 335.
[CrossRef] [PubMed]

2. Gabashvili, I.S.; Sokolowski, B.H.; Morton, C.C.; Giersch, A.B. Ion channel gene expression in the inner ear.
J. Assoc. Res. Otolaryngol. 2007, 8, 305–328. [CrossRef] [PubMed]

3. Ger, M.F.; Rendon, G.; Tilson, J.L.; Jakobsson, E. Domain-based identification and analysis of glutamate
receptor ion channels and their relatives in prokaryotes. PLoS ONE 2010, 5, e12827. [CrossRef] [PubMed]

4. Wei, F.; Yan, L.M.; Su, T.; He, N.; Lin, Z.J.; Wang, J.; Shi, Y.W.; Yi, Y.H.; Liao, W.P. Ion Channel Genes and
Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci. Bull. 2017, 33,
455–477. [CrossRef] [PubMed]

5. Wang, F.; Knutson, K.; Alcaino, C.; Linden, D.R.; Gibbons, S.J.; Kashyap, P.; Grover, M.; Oeckler, R.;
Gottlieb, P.A.; Li, H.J.; et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin
cell response to mechanical forces. J. Phys. 2017, 595, 79–91. [CrossRef] [PubMed]

6. Nguyen, T.H.; Huang, S.; Meynard, D.; Chaine, C.; Michel, R.; Roelfsema, M.R.G.; Guiderdoni, E.;
Sentenac, H.; Very, A.A. A Dual Role for the OsK5.2 Ion Channel in Stomatal Movements and K+ Loading
into Xylem Sap. Plant Phys. 2017, 174, 2409–2418. [CrossRef] [PubMed]

7. Zubcevic, L.; Herzik, M.A., Jr.; Chung, B.C.; Liu, Z.; Lander, G.C.; Lee, S.Y. Cryo-electron microscopy
structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 2016, 23, 180–186. [CrossRef] [PubMed]

http://lin.uestc.edu.cn/server/IonchanPredv2.0
http://dx.doi.org/10.1080/19336950.2015.1077650
http://www.ncbi.nlm.nih.gov/pubmed/26646476
http://dx.doi.org/10.1007/s10162-007-0082-y
http://www.ncbi.nlm.nih.gov/pubmed/17541769
http://dx.doi.org/10.1371/journal.pone.0012827
http://www.ncbi.nlm.nih.gov/pubmed/20949136
http://dx.doi.org/10.1007/s12264-017-0134-1
http://www.ncbi.nlm.nih.gov/pubmed/28488083
http://dx.doi.org/10.1113/JP272718
http://www.ncbi.nlm.nih.gov/pubmed/27392819
http://dx.doi.org/10.1104/pp.17.00691
http://www.ncbi.nlm.nih.gov/pubmed/28626008
http://dx.doi.org/10.1038/nsmb.3159
http://www.ncbi.nlm.nih.gov/pubmed/26779611


Int. J. Mol. Sci. 2017, 18, 1838 9 of 10

8. Linsdell, P. Metal bridges to probe membrane ion channel structure and function. Biomol. Concepts 2015, 6,
191–203. [CrossRef] [PubMed]

9. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Suel, G.M. Ion channels enable electrical
communication in bacterial communities. Nature 2015, 527, 59–63. [CrossRef] [PubMed]

10. Hille, B.; Dickson, E.J.; Kruse, M.; Vivas, O.; Suh, B.C. Phosphoinositides regulate ion channels.
Biochim. Biophys. Acta 2015, 1851, 844–856. [CrossRef] [PubMed]

11. Liu, L.X.; Li, M.L.; Tan, F.Y.; Lu, M.C.; Wang, K.L.; Guo, Y.Z.; Wen, Z.N.; Jiang, L. Local sequence
information-based support vector machine to classify voltage-gated potassium channels. Acta Biochim.
Biophys. Sin. 2006, 38, 363–371. [CrossRef] [PubMed]

12. Saha, S.; Zack, J.; Singh, B.; Raghava, G.P. VGIchan: Prediction and classification of voltage-gated ion
channels. Genom. Proteom. Bioinform. 2006, 4, 253–258. [CrossRef]

13. Lin, H.; Ding, H. Predicting ion channels and their types by the dipeptide mode of pseudo amino acid
composition. J. Theor. Biol. 2011, 269, 64–69. [CrossRef] [PubMed]

14. Chen, W.; Lin, H. Identification of voltage-gated potassium channel subfamilies from sequence information
using support vector machine. Comput. Biol. Med. 2012, 42, 504–507. [CrossRef] [PubMed]

15. Liu, W.X.; Deng, E.Z.; Chen, W.; Lin, H. Identifying the subfamilies of voltage-gated potassium channels
using feature selection technique. Int. J. Mol. Sci. 2014, 15, 12940–12951. [CrossRef] [PubMed]

16. Tiwari, A.K.; Srivastava, R. An efficient approach for the prediction of ion channels and their subfamilies.
Comput. Biol. Chem. 2015, 58, 205–221. [CrossRef] [PubMed]

17. Gao, J.; Cui, W.; Sheng, Y.; Ruan, J.; Kurgan, L. PSIONplus: Accurate Sequence-Based Predictor of Ion
Channels and Their Types. PLoS ONE 2016, 11, e0152964. [CrossRef] [PubMed]

18. Lin, H.; Liu, W.X.; He, J.; Liu, X.H.; Ding, H.; Chen, W. Predicting cancerlectins by the optimal g-gap
dipeptides. Sci. Rep. 2015, 5, 16964. [CrossRef] [PubMed]

19. The UniProt, C. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169.
[CrossRef]

20. Donizelli, M.; Djite, M.A.; le Novere, N. LGICdb: A manually curated sequence database after the genomes.
Nucleic Acids Res. 2006, 34, 267–269. [CrossRef] [PubMed]

21. Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide
sequences. Bioinformatics 2006, 22, 1658–1659. [CrossRef] [PubMed]

22. Chen, W.; Feng, P.; Tang, H.; Ding, H.; Lin, H. Identifying 2′-O-methylationation sites by integrating
nucleotide chemical properties and nucleotide compositions. Genomics 2016, 107, 255–258. [CrossRef]
[PubMed]

23. Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: Identifying the adenosine to inosine
editing sites in RNA sequences. Oncotarget 2017, 8, 4208–4217. [CrossRef] [PubMed]

24. Zou, Q.; Mao, Y.; Hu, L.; Wu, Y.; Ji, Z. miRClassify: An advanced web server for miRNA family classification
and annotation. Comput. Biol. Med. 2014, 45, 157–160. [CrossRef] [PubMed]

25. Chen, W.; Lin, H. Prediction of midbody, centrosome and kinetochore proteins based on gene ontology
information. Biochem. Biophys. Res. Commun. 2010, 401, 382–384. [CrossRef] [PubMed]

26. Chen, W.; Feng, P.; Lin, H. Prediction of ketoacyl synthase family using reduced amino acid alphabets. J. Ind.
Microbiol. Biotechnol. 2012, 39, 579–584. [CrossRef] [PubMed]

27. Shen, H.B.; Chou, K.C. PseAAC: A flexible web server for generating various kinds of protein pseudo amino
acid composition. Anal. Biochem. 2008, 373, 386–388. [CrossRef] [PubMed]

28. Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.-C. Pse-in-One: A web server for generating various
modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015, 43, W65–W71.
[CrossRef] [PubMed]

29. Tang, H.; Chen, W.; Lin, H. Identification of immunoglobulins using Chou′s pseudo amino acid composition
with feature selection technique. Mol. BioSyst. 2016, 12, 1269–1275. [CrossRef] [PubMed]

30. Zhao, Y.W.; Lai, H.Y.; Tang, H.; Chen, W.; Lin, H. Prediction of phosphothreonine sites in human proteins by
fusing different features. Sci. Rep. 2016, 6, 34817. [CrossRef] [PubMed]

31. Liu, B.; Chen, J.; Wang, X. Protein remote homology detection by combining Chou′s distance-pair pseudo
amino acid composition and principal component analysis. Mol. Genet. Genom. 2015, 290, 1919–1931.
[CrossRef] [PubMed]

http://dx.doi.org/10.1515/bmc-2015-0013
http://www.ncbi.nlm.nih.gov/pubmed/26103632
http://dx.doi.org/10.1038/nature15709
http://www.ncbi.nlm.nih.gov/pubmed/26503040
http://dx.doi.org/10.1016/j.bbalip.2014.09.010
http://www.ncbi.nlm.nih.gov/pubmed/25241941
http://dx.doi.org/10.1111/j.1745-7270.2006.00177.x
http://www.ncbi.nlm.nih.gov/pubmed/16761093
http://dx.doi.org/10.1016/S1672-0229(07)60006-0
http://dx.doi.org/10.1016/j.jtbi.2010.10.019
http://www.ncbi.nlm.nih.gov/pubmed/20969879
http://dx.doi.org/10.1016/j.compbiomed.2012.01.003
http://www.ncbi.nlm.nih.gov/pubmed/22297432
http://dx.doi.org/10.3390/ijms150712940
http://www.ncbi.nlm.nih.gov/pubmed/25054318
http://dx.doi.org/10.1016/j.compbiolchem.2015.07.002
http://www.ncbi.nlm.nih.gov/pubmed/26256801
http://dx.doi.org/10.1371/journal.pone.0152964
http://www.ncbi.nlm.nih.gov/pubmed/27044036
http://dx.doi.org/10.1038/srep16964
http://www.ncbi.nlm.nih.gov/pubmed/26648527
http://dx.doi.org/10.1093/nar/gkw1099
http://dx.doi.org/10.1093/nar/gkj104
http://www.ncbi.nlm.nih.gov/pubmed/16381861
http://dx.doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
http://dx.doi.org/10.1016/j.ygeno.2016.05.003
http://www.ncbi.nlm.nih.gov/pubmed/27191866
http://dx.doi.org/10.18632/oncotarget.13758
http://www.ncbi.nlm.nih.gov/pubmed/27926534
http://dx.doi.org/10.1016/j.compbiomed.2013.12.007
http://www.ncbi.nlm.nih.gov/pubmed/24480175
http://dx.doi.org/10.1016/j.bbrc.2010.09.061
http://www.ncbi.nlm.nih.gov/pubmed/20854791
http://dx.doi.org/10.1007/s10295-011-1047-z
http://www.ncbi.nlm.nih.gov/pubmed/22042516
http://dx.doi.org/10.1016/j.ab.2007.10.012
http://www.ncbi.nlm.nih.gov/pubmed/17976365
http://dx.doi.org/10.1093/nar/gkv458
http://www.ncbi.nlm.nih.gov/pubmed/25958395
http://dx.doi.org/10.1039/C5MB00883B
http://www.ncbi.nlm.nih.gov/pubmed/26883492
http://dx.doi.org/10.1038/srep34817
http://www.ncbi.nlm.nih.gov/pubmed/27698459
http://dx.doi.org/10.1007/s00438-015-1044-4
http://www.ncbi.nlm.nih.gov/pubmed/25896721


Int. J. Mol. Sci. 2017, 18, 1838 10 of 10

32. Ding, H.; Feng, P.M.; Chen, W.; Lin, H. Identification of bacteriophage virion proteins by the ANOVA feature
selection and analysis. Mol. BioSyst. 2014, 10, 2229–2235. [CrossRef] [PubMed]

33. Liao, Z.; Ju, Y.; Zou, Q. Prediction of G-protein-coupled receptors with SVM-Prot features and random forest.
Scientifica 2016, 2016, 8309253. [CrossRef] [PubMed]

34. Li, D.; Ju, Y.; Zou, Q. Protein Folds Prediction with Hierarchical Structured SVM. Curr. Proteom. 2016, 13,
79–85. [CrossRef]

35. Chen, W.; Xing, P.; Zou, Q. Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble
Support Vector Machines. Sci. Rep. 2017, 7, 40242. [CrossRef] [PubMed]

36. Liu, B.; Zhang, D.; Xu, R.; Xu, J.; Wang, X.; Chen, Q.; Dong, Q.; Chou, K.-C. Combining evolutionary
information extracted from frequency profiles with sequence-based kernels for protein remote homology
detection. Bioinformatics 2014, 30, 472–479. [CrossRef] [PubMed]

37. Lai, H.Y.; Chen, X.X.; Chen, W.; Tang, H.; Lin, H. Sequence-based predictive modeling to identify
cancerlectins. Oncotarget 2017, 8, 28169–28175. [CrossRef] [PubMed]

38. Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: Identifying the Occurrence Sites of
Different RNA Modifications by Incorporating Collective Effects of Nucleotides into PseKNC. Mol. Ther.
Nucleic Acids 2017, 7, 155–163. [CrossRef] [PubMed]

39. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. Acm Trans. Intell. Syst. Technol. 2011,
2, 27. [CrossRef]

40. Chou, K.C.; Zhang, C.T. Prediction Of Protein Structural Classes. Crit. Rev. Biochem. Mol. Biol. 1995, 30,
275–349. [CrossRef] [PubMed]

41. Liu, B.; Wu, H.; Wang, X.; Chou, K.-C. Pse-Analysis a python package for DNA, RNA and protein peptide
sequence analysis based on pseudo components and kernel methods. Oncotarget 2017, 8, 13338–13343.
[CrossRef] [PubMed]

42. Lin, H.; Liang, Z.Y.; Tang, H.; Chen, W. Identifying σ70 promoters with novel pseudo nucleotide composition.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2017. [CrossRef] [PubMed]

43. Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: Identify human origin of
replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition.
Oncotarget 2016, 7, 69783–69793. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C4MB00316K
http://www.ncbi.nlm.nih.gov/pubmed/24931825
http://dx.doi.org/10.1155/2016/8309253
http://www.ncbi.nlm.nih.gov/pubmed/27529053
http://dx.doi.org/10.2174/157016461302160514000940
http://dx.doi.org/10.1038/srep40242
http://www.ncbi.nlm.nih.gov/pubmed/28079126
http://dx.doi.org/10.1093/bioinformatics/btt709
http://www.ncbi.nlm.nih.gov/pubmed/24318998
http://dx.doi.org/10.18632/oncotarget.15963
http://www.ncbi.nlm.nih.gov/pubmed/28423655
http://dx.doi.org/10.1016/j.omtn.2017.03.006
http://www.ncbi.nlm.nih.gov/pubmed/28624191
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.3109/10409239509083488
http://www.ncbi.nlm.nih.gov/pubmed/7587280
http://dx.doi.org/10.18632/oncotarget.14524
http://www.ncbi.nlm.nih.gov/pubmed/28076851
http://dx.doi.org/10.1109/TCBB.2017.2666141
http://www.ncbi.nlm.nih.gov/pubmed/28186907
http://dx.doi.org/10.18632/oncotarget.11975
http://www.ncbi.nlm.nih.gov/pubmed/27626500
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Parameter Optimization 
	Model Establishment 

	Materials and Methods 
	Benchmark Databases 
	Feature Extraction of Samples 
	Feature Selection 
	Support Vector Machine 
	Performance Evaluation 

	Conclusions 

