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Small heat shock protein (sHSP) is a superfamily of molecular chaperone and is found from archaea to human.
Recent researches have demonstrated that sHSPs participate in a series of biological processes and are even
closely associated with serious diseases. Since sHSP is a very large superfamily and members from different su-
perfamilies exhibit distinct functions, accurate classification of the subfamily of sHSP will be helpful for
unrevealing its functions. In the present work, a support vector machine-basedmethod was proposed to classify
the subfamily of sHSPs. In the 10-fold cross validation test, an overall accuracy of 93.25% was obtained for classi-
fying the subfamily of sHSPs. The superiority of the proposed method was also demonstrated by comparing it
with the other methods. It is anticipated that the proposed method will become a useful tool for classifying the
subfamily of sHSPs.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Small heat shock protein (sHSP) is a kind of ATP-independent mo-
lecular chaperones [1]. sHSPs are found to be expressed throughout
the three kingdoms of life from archaea to human [2,3] and even in
the viruses [4]. sHSP was regarded as the defense system of conditions
that endanger the cellular proteome [5]. By preventing the aggregation
of proteins, sHSPs play important roles in biological and cellular pro-
cesses, such as proteasomal degradation, cell signaling, cell differentia-
tion and cell apoptosis [6].

Recent researches have demonstrated that both abnormal expres-
sion of sHSPs and mutations in sHSPs are associated the pathological
conditions in human [7]. For example, the up-regulation of sHSPs can
promote the cancer development, while its down-regulation leads to
beneficial outcomes [6]. sHSPs are also linked to the development of dis-
eases, such as neurological disease [8], metabolic diseases [9] and can-
cers [10]. For example, several members of the sHSPs were reported to
be associated with human neurodegenerative disorders, such as
Alzheimer's disease, Charcot-Marie-Tooth disease (CMT) and
Parkinson's disease [11]. More details about the links between sHSPs
and human diseases were discussed in a recent review [12]. On the con-
trary, the benefits of sHSPs were also observed. sHSPs can not only pro-
mote longevity andhealthy aging in vivo [13], but also becomepotential
drug targets for new therapeutic for aging diseases and cancers [10]. For
example, the ubiquitous expression of sHSPs is closely associated with
the progression of numerous of cancers. Therefore, the sHSPs have
been regarded as new targets of cancer therapy [14]. In addition,
sHSPs can stimulate macrophages to suppress inflammation and hold
the potential to be therapeutic agents for inflammatory disorders [15].
However, our understanding about its molecular mechanism is still at
the infant stage.

In fact, sHSP is a very large superfamily of molecular chaperones.
Based on their amino acid compositions and domains, the sHSPs can
be classified into 21 superfamilies at least [16]. Since their amino acid
composition and domains are distinct, the members from different su-
perfamilies of sHSPs exhibit different functions. Hence, it is necessary
to develop automated methods for demining which superfamily of a
query sHSP belonging to.

Keeping this inmind, in the presentwork, a support vectormachine-
based method was proposed to classify the subfamilies of sHSPs, in
which the protein sequences were encoded by using the g-gap dipep-
tide. Comparative results among the methods based on different kinds
of commonly used features demonstrate that the superiority of the pro-
posed method for classifying the subfamilies of sHSPs. It is anticipated
that the proposed method will become a useful tool for researches on
sHSPs.

2. Materials and methods

2.1. Datasets

The sHSPs were obtained from the small Heat Shock Proteins data-
base (sHSPdb, http://forge.info.univangers.fr/~gh/Shspdb/index.php).
By gathering data fromUniprot, PFAM, InterPro, etc., the sHSPdb has de-
posited more than 6200 sHSPs from nearly all kingdoms of life [16].
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Based on the unique sequencemotif, the sHSPs are classified into 21 su-
perfamilies. To build the dataset for sHSP superfamily classification, we
harvested all the sequences deposited in sHSPdb.

In order to obtain a high quality dataset, the CD-HIT tool was used to
remove sequences with the sequence similarity greater than 40%
[17,18]. Accordingly, we obtained 1683 sequences belong to the 21 su-
perfamilies of sHSP. The detail number of sequences in each superfamily
was shown in Fig. 1. It was found that the number of samples in most
superfamilies was too small to have statistical significance. Thus, only
sHSP10, sHSP11 and sHSP12 were left in the final benchmark dataset
that includes 118, 403 and 86 samples for these superfamilies, respec-
tively. The benchmark dataset is provided in Supplementary material.
2.2. g-Gap dipeptide composition

Themost straightforwardmethod to encode protein sequences is by
using the amino acid composition [19–21]. However, the global se-
quence information couldn't be reflected by amino acid composition
[22]. In order to integrate long-range sequence order information, the
g-gap dipeptide composition was proposed to represent protein se-
quences. Compared with the amino acid composition, the g-gap dipep-
tide composition could describe both local and global correlations
between amino acids in a sequence [23]. The definition of g-gap dipep-
tide composition is as following,

F ¼ f 1
g f 2

g
::: f i

g
:::f g400

� � ð1Þ

where f i
g is the frequency of the i-th (i= 1, 2,…, 400) dipeptide with

g-gap interval in the sequence. g is an integer andwas set in the range of
[0, 5] in the presentwork. g=0 represents the correlation between two
adjacent amino acids, and g=1 represents the correlation of two amino
acids with one amino acid interval, and so forth.
2.3. Support vector machine

Support vector machine (SVM) is a supervised learningmethod and
has been successfully used in the realm of bioinformatics [24–30]. In the
present work, the LIBSVM package 3.20 downloaded from https://
www.csie.ntu.edu.tw/~cjlin/libsvm/ was used to perform the predic-
tion. The radial basis kernel function (RBF) was used to obtain the clas-
sification hyperplane. In this work, the best regularization parameter C
and kernelwidth parameter gwere determined by using the grid search
method in the ranges [2−5, 215] and [2−15, 2−5] with the steps of 2 and
2−1, respectively.
Fig. 1. The number of samples in each superfamily of sHSP.
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2.4. Performance evaluation

The performance of the proposed method was evaluated by the
commonly used metrics [31–37], namely sensitivity (Sn), specificity
(Sp) and overall accuracy (OA), which are defined as following,

Sn ið Þ ¼ TP ið Þ
TP ið Þ þ FN ið Þ � 100%

Sp ið Þ ¼ TN ið Þ
TN ið Þ þ FP ið Þ � 100%

OA ¼ 1
N
∑
3

i¼1
TP ið Þ

8>>>>>>>><
>>>>>>>>:

ð2Þ

where TP(i) is the number of the correctly identified positive samples in
the i-th family, FN(i) is the number of the samples in the i-th family that
are incorrectly predicted to be of other families, TN(i) is the number of
the correctly identified samples that are not belong to the i-th family,
FP(i) is the number of the samples in the other family that are incor-
rectly predicted to be of the i-th family.N is the total number of samples
in the dataset.

3. Results

3.1. Amino acids composition analysis

In order to demonstrate the rationality of using the sequence based
information to describe the proteins, the Composition Profiler [38] was
employed to analyze the relative amino acid preference in the three su-
perfamilies of sHSP. To find out the amino acid bias in a specific super-
family, the sequences from it was set as the query samples, the
sequences from the remaining superfamilies were used as the back-
ground samples.

By setting p-value≤0.01 and Bootstrap = 1000 in Composition Pro-
filer, we analyzed the amino acid preference in the three superfamilies
of sHSP. The results were shown in Fig. 2. It was found that His
(H) and Ser (S) were enriched in sHSP10 and sHSP12, Trp (W) was
enriched in sHSP11 and sHSP 12. Moreover, the superfamily specific
amino acid preference was also observed. Ala(A), Phe(F), Asn(N), Thr
(T) and Tyr(Y) were significantly enriched in sHSP10; Glu(E), Ile(I),
Lys(K), Met(M) and Val(V) were significantly enriched in sHSP11; Cys
(C), Pro(P) and Gln(Q) were significantly enriched in sHSP12. These re-
sults demonstrate that the amino acid preference are different among
the three superfamilies of sHSP. Therefore, it is reasonable to classify
sHSP superfamilies by using sequence based information.

3.2. Performance of classifying the subfamilies of sHSP

Based on the above analysis, we encode the sHSPs by using the g-gap
dipeptide compositionmethod. As indicated in Eq. (1), the greater the g
is, the longer range sequence-order information will be included. How-
ever, the robustness of the signal-to-noise ratiomight also be affected at
the meantime. Therefore, it's necessary to determine the optimal g.

In the presentwork, our searching for the optimal value of gwas car-
ried out in the range of [0, 5] with a step of 1. Accordingly, six models
(g = 0, 1, …, 5) were built. The 10-fold cross validation test results for
identifying the superfamilies of sHSPs in the datasets were listed in
Table 1. It was found that the best predictive accuracy (93.25%) was ob-
tained when g = 0 and g = 1. This result indicates that the accuracy
wasn't improved with the increment of g. It should also be mentioned
that, although themodel based on g=0 and g=1 yielded the same ac-
curacy, the sensitivity for identifying sHSP12 based on g = 1 is signifi-
cantly higher than that based on g = 0. Therefore, the optimal value
of g was used to build the model for classifying the superfamilies
of sHSP.
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Table 1
Performance for classifying subfamilies of sHSPs by using g-gap dipeptide composition.

Sub family Metrics Features

g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

sHSP_10 Sn (%) 94.07 92.37 92.37 52.54 85.59 84.75
Sp (%) 98.48 98.28 97.20 99.76 98.29 97.41

sHSP_11 Sn (%) 97.52 97.02 96.03 98.77 97.52 95.78
Sp (%) 84.80 85.78 85.22 38.24 82.35 82.09

sHSP_12 Sn (%) 72.09 76.74 74.42 18.06 77.91 75.58
Sp (%) 97.52 96.72 96.72 96.72 98.33 93.55
OA(%) 93.25 93.25 92.26 79.08 92.42 90.77

Table 2
Results for classifying subfamilies of sHSPs by using composition transition distribution.

Sub family Metrics Features

CTDC CTDT CTDD

sHSP_10 Sn (%) 72.88 88.13 73.72
Sp (%) 93.43 95.52 96.92

sHSP_11 Sn (%) 89.82 91.56 95.03
Sp (%) 68.84 80.09 72.50

sHSP_12 Sn (%) 59.30 66.27 67.44
Sp (%) 87.12 87.41 92.06
OA (%) 82.21 87.31 86.99

Fig. 2. The amino acid composition bias in the three superfamilies of sHSP. (a) the relative
enrichment and depletion of amino acid in sHSP10; (b) The relative enrichment and
depletion of amino acid in sHSP11; (c) The relative enrichment and depletion of amino
acid in sHSP12. The x-axis is the 20 native amino acid, and the y-axis is the relative
enrichment ratio.

Table 3
Results for classifying subfamilies of sHSPs by using the dipeptide composition based on
RAAC.

Sub family Metrics Features

CP(5) CP(8) CP(9) CP(11) CP(13)

sHSP_10 Sn (%) 75.42 87.29 88.96 90.68 93.22
Sp (%) 94.24 97.82 96.49 97.39 97.40

sHSP_11 Sn (%) 92.06 96.77 95.04 96.77 96.53
Sp (%) 72.96 79.70 81.47 82.27 84.24

sHSP_12 Sn (%) 62.79 67.44 66.28 69.77 70.93
Sp (%) 89.31 95.87 92.80 95.94 97.52
OA (%) 84.68 90.77 89.79 91.27 92.42
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3.3. Comparison with other methods

To demonstrate the performance of the proposed method, it's neces-
sary to compare the proposed method with the other methods. Since
there is nomethods available for this aim, we compared the performance
of the proposed method with that based on commonly used features,
namely composition transition distribution and reduced amino acid com-
position (RAAC).
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The composition transition distribution is widely used in computa-
tional proteomics, which describes the sequences in terms of the struc-
tural or physicochemical property of amino acid [39]. By using iFeature
[40], we calculated the composition (CTDC), transition (CTDT) and dis-
tribution (CTDD), based on the normalized Van der Waals Volume, po-
larity, polarizability, charge, secondary structures, solvent accessibility
and 7 types of hydrophobicity of the twenty amino acids. The predictive
results based on composition transition distribution were reported in
Table 2. The best accuracy of 87.31% was obtained based on CTDD,
which is lower than that based on the 1-gap dipeptide composition.

Compared with the amino acid composition, RAAC can extract the
structural similarity information of the sequence and was also widely
used for protein family classifications [41]. According to different opti-
mization procedures [42], the twenty amino acids can be clustered
into five different clusters with the number of reduced amino acid al-
phabet of 5, 8, 9, 11 and 13, respectively. For clarity, we called these
five profiles as CP(5), CP(8), CP(9), CP(11), CP(13), respectively. The
predictive results of the dipeptide composition based on RAAC were
listed in Table 3. Themodeled based on CP(13) yielded the best accuracy
of 92.42%, which is also lower than that based on the 1-gap dipeptide
composition.

4. Conclusions

Based on the experimental data deposited in sHSPdb, a high quality
dataset was built for classifying the subfamilies of sHSPs. Consistent
with reported results, the amino acid composition preference was also
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observed in the different superfamilies of sHSPs. Accordingly, a support
vector machine based method was proposed to classify the three fami-
lies of sHSP (i.e. sHSP10, sHSP11 and sHSP12), in which the 1-gap di-
peptide composition was used to encode the sequences. Comparative
results demonstrated that the proposed method is promising for the
subfamilies of sHSPs.

It has not escaped our notice that, due to the limited number of sam-
ples in the other superfamilies, the current method is limited to classify
sHSP10, sHSP11 and sHSP12. Therefore, in futureworks, wewill enlarge
the samples of sHSPs by collecting the data from literatures to develop a
newmodel able to classifymore superfamilies of sHSPs by using ensem-
ble classifiers [43] and deep learning methods [44,45].
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