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A B S T R A C T   

The 5-methyluridine (m5U) modification plays important roles in a series of biological processes. Accurate 
identification of m5U sites will be helpful to decode its biological functions. Although experimental techniques 
have been proposed to detect m5U, they are still expensive and time consuming. In the present work, a support 
vector machine based method, called iRNA-m5U, was developed to identify the m5U sites in the Saccharomyces 
cerevisiae transcriptome. The performance of iRNA-m5U was validated based on different datasets. The accu
racies obtained by iRNA-m5U is promising, indicating that it holds the potential to become an useful tool for the 
identification of m5U sites.   

1. Introduction 

Over the past six decades, approximately 170 kinds of RNA modifi
cations have been reported in the three kingdoms of life [1]. These co
valent post-transcriptional modifications not only enriched the genetic 
information, but also participate in a series of biological processes. For 
example, by regulating RNA splicing [2], RNA stability [3,4] and protein 
translation efficiency [5], they were reported to play important roles in 
cell differentiation and reprogramming [6], immune tolerance [7], and 
even diseases [8]. 

Owing to the development of high throughput sequencing technol
ogy, the transcriptome-wide profiles were available for the common 
RNA modifications, such as N6-methyladenosine (m6A) [9], N1-meth
yladenosine (m1A) [10], 5-methylcytosine (m5C) [11], etc. Compared 
with those modifications, researches on 5-methyluridine (m5U) are 
extremely deficient. Therefore, it’s necessary to develop new methods 
for identifying m5U sites. 

In 2019, the fluorouracil induced catalytic crosslinking sequencing 
technique was proposed to identify m5U site in Homo sapiens [12]. 
However, this experimental method is still cost ineffective for 
transcriptome-wide detections. These dilemma was also faced by other 
kinds of modifications. To solve this problem, a series of in silico 
methods have been proposed to detect the RNA modifications in 
different species [13–20]. 

To the best of our knowledge, m5UPred is the only computational 
method for identifying m5U site [21]. However, m5UPred is trained 
based on the data from human, and its performance is still not satis
factory for identifying the m5U sites in Saccharomyces cerevisiae. 

In the present work, we present a new predictor, called iRNA-m5U, 
to identify the m5U site in S. cerevisiae. In this predictor, the nucleo
tide chemical property and nucleotide density were used to convert the 
RNA sequences into discrete feature vectors. iRNA-m5U obtained an 
accuracy of 98.82% for identifying m5U site in the benchmark dataset, 
which is better than that of m5UPred. 

2. Materials and methods 

2.1. Benchmark dataset 

The 263 m5U site containing sequences in S. cerevisiae were obtained 
from the RMBase database [22]. These sequences were all 41 nt with the 
m5U site in their center positions. Our series of works [23,24] have 
proved that the 41-nt long sequence with the modification site in the 
center is the optimal window size for RNA modification site identifica
tion. To construct a high quality benchmark dataset, the CD-HIT tool 
[25] was used to remove samples with the sequence similarity greater 
than 90%. Accordingly, 49 m5U site containing sequences were retained 
and deemed as the positive dataset. 
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Since the m5U in RMBase database were all from tRNA, the negative 
samples were collected from the tRNAs of S. cerevisiae by obeying the 
following criteria. The sequences should be 41 nt with the unmodified 
uridine sites in the center. By doing so, 205 negative samples with the 
sequence similarity no greater than 90% were obtained. Therefore, the 
benchmark dataset (namely tRNA_Dataset) containing 49 samples and 
205 negative samples was obtained. 

In addition, to further evaluate the performance of the proposed 
method, we built another 10 negative datasets by harvesting the un
modified uridine sites from the transcripts of S. cerevisiae. By doing so, a 
huge number of 41-nt long sequences could be obtained. To balance the 
samples in the positive and negative datasets, we randomly selected out 
490 negative samples and averagely divided them into 10 groups. 
Accordingly, another 10 negative datasets (namely dataset 1, dataset 2, 
…, dataset 10) with a 1:1 positive-to-negative ratio were constructed. 
All these data were provided in Supplementary Material. 

2.2. Sequence encoding scheme 

Since the effectiveness of nucleotide chemical property and nucleo
tide density have been proved for identifying nucleotide modification 
sites [26], they were also used to encode the samples in the present 
work. 

2.2.1. Nucleotide chemical property 
The four components of RNA, namely adenine (A), guanine (G), 

cytosine (C) and uridine (U), have different chemical structures. They 
could be categorized into three different groups in terms of the number 
of rings, strong or weak hydrogen bonds, and existence of amino or keto 
group. In order to include the different chemical properties, the nucle
otides in RNA were projected into a three dimensional Cartesian coor
dinate system, where the × , y and z coordinates stand for the ring 
structure, the hydrogen bond, and the amino/keto group, and were 
defined by the following formula [27], 

xi =

{
1 if ni∈ {A,G\}
0 if ni∈ {C,U\} , yi =

{
1 if ni∈ {A,U\}
0 if ni∈ {C,G\} , zi

=

{
1 if ni∈ {A,C\}
0 if ni∈ {G,U\}

(1) 

Therefore, A, C, G and U in the sequence can be represented by (1, 1, 
1), (0, 0, 1), (1, 0, 0) and (0, 1, 0), respectively. 

2.2.2. Nucleotide density 
In order to include the sequence order information surrounding the 

modification sites, the density di for nucleotide nj at position i was 
defined as following [27], 

di =
1
|Ni|

∑i

j=1
f
(
nj
)
, f (nj) =

{
1 if nj = q

0 other cases

(2) 

|Ni| is the length of the prefix string containing i nucleotides. Take 
“A” in “AGCAUGCGA” as an example, the density of A at the 1st, 4th, 
and 9th positions were 1, 0.5 and 0.33, respectively. 

By combining the nucleotide chemical property and nucleotide 
density, each nucleotide in the sequence will be encoded by a discrete 
vector containing 4 elements, 3 of them represent the nucleotide 
chemical property, and the other one represents the nucleotide density. 

2.3. Classification algorithm 

In the present work, the popular and powerful machine learning 
algorithm, namely support vector machine (SVM), was used to perform 
the classification [28–31]. The LibSVM package 3.18 downloaded from 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ was used to implement the 

SVM with the radial basis kernel function. The regularization parameter 
C and kernel parameter γ of SVM was determined by using the grid 
search method. 

The predictions were made based on the probability score obtained 
from SVM. If the score is greater than 0.5, a uridine will be predicted as a 
m5U, otherwise, non-m5U. 

2.4. Evaluation metrics 

The jackknife test was used to examine the performance of the pro
posed method. In the jackknife test, each sequence in the training 
dataset is in turn singled out as an independent test sample. The per
formance of the proposed model was measured by using the Sn (Sensi
tivity), Sp (Specificity), ACC (accuracy), MCC (Mathew’s correlation 
coefficient), which have been widely used to evaluate computational 
models in bioinformatics and were defined as following [32–34]. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn =
TP

TP + FN
× 100%

Sp =
TN

TN + FP
× 100%

Acc =
TP + TN

TP + FN + TN + FP
× 100%

MCC =
(TP × TN) − (FP × FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)

√

(3) 

where TP, TN, FP and FN represent the number of true positive, true 
negative, false positive, and false negative, respectively. 

3. Result 

3.1. Nucleotide composition analysis 

In order to discover whether these exists nucleotide composition bias 
surrounding the m5U sites, the sequence logo of the positive samples was 
plotted by using the WebLogo tool [35]. The motif “GUUCGA” located at 
the positions ranging from − 1 to 4 relative to the m5U site was detected 
(Fig. 1), which is exactly the consensus sequence to be recognized by 
m5U methyltransferases [36,37]. 

3.2. m5U sites identification 

The above analysis indicates that the sequence based information 
holds the potential for the identification of m5U sites. Thus, we encoded 
the RNA samples by using the scheme described in section 2.2. 
Accordingly, each of the 41-nt long sequence in the dataset was con
verted into a 164-dimensional vector and was used as the input of SVM. 
The regularization parameter and kernel parameters of SVM were 2 and 
0.0078125, respectively. The model thus obtained is called iRNA-m5U. 
In the jackknife test, iRNA-m5U obtained an accuracy of 98.82% with 
the sensitivity of 93.88%, specificity of 100% and MCC of 0.96 for 
identifying the m5U site in the tRNA_Dataset (Table 1). In addition, the 
receiver operating characteristic (ROC) curve was also plotted as shown 
in Fig. 2. It was found that iRNA-m5U obtained an AUC of (area under 
curve) 0.969, indicating its excellent performance for identifying m5U 
sites. 

To demonstrate whether the performance of the proposed method is 
depended on the negative samples, we further evaluated it by using the 
10 negative datasets derived from the transcript. The performances of 
the proposed method for identifying the m5U sites in the 10 datasets are 
still excellent, and are comparable with that based on the tRNA_Dataset 
(Table 1). This result demonstrates the robustness of the proposed 
method, and also indicates that its performance is independent of the 
negative sample selection bias. 
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3.3. Comparison with existing methods 

To the best of our knowledge, m5UPred [21] is the only computa
tional method for identifying m5U sites in human transcriptome. 
Therefore, we compared the performance of iRNA-m5U with that of 
m5UPred for identifying the m5U sites in the tRNA_Dataset. It was found 
that m5UPred only obtained an accuracy of 64.96% for identifying the 
m5U sites in the S. cerevisiae transcriptome (Table 2). 

At the same time, we also validated the iRNA-m5U based on the 
independent test dataset built by Jiang et al [21], which includes 245 
human m5U sites containing sequences. However, iRNA-m5U only 
correctly identified 55 m5U sites with the accuracy of 22.45%, which is 
lower than that of m5UPred. 

The above results indicate that both m5UPred and iRNA-m5U are 
species specific. Therefore, it’s necessary to develop species-specific 
methods for identifying m5U sites. 

4. Discussion 

By performing the nucleotide composition analysis, the motif 
“GUUCGA” were detected surrounding the m5U sites. Accordingly, 
based on the sequence-derived information, namely nucleotide chemical 
property and nucleotide density, the iRNA-m5U was proposed to iden
tify the m5U sites in the S. cerevisiae transcriptome. The performances of 
iRNA-m5U were validated by using different datasets. The jackknife test 
results indicate that iRNA-m5U is promising and smarter than m5UPred 
for identifying m5U sites in S. cerevisiae. 

In addition, iRNA-m5U was also applied to identify the m5U sites in 
human transcriptome. However, its performance was lower than that of 
m5UPred. This might be due to the small size of the benchmark dataset 
used to train iRNA-m5U. The features used in the present work were not 
informative enough to capture the key information to represent m5U site 
containing sequences in all species. 

In order to enhance the generalization ability of iRNA-m5U, in future 
work, we will try to enlarge the dataset by harvesting much more data, 
and optimize the model by integrating features from different sources. 
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C. He, The dynamic N(1)-methyladenosine methylome in eukaryotic messenger 
RNA, Nature 530 (7591) (2016) 441–446. 

[11] S. Edelheit, S. Schwartz, M.R. Mumbach, O. Wurtzel, R. Sorek, V. de Crécy-Lagard, 
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