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Abstract

The ability of a compound to permeate across the blood–brain barrier (BBB) is a significant factor for central nervous system drug
development. Thus, for speeding up the drug discovery process, it is crucial to perform high-throughput screenings to predict the BBB
permeability of the candidate compounds. Although experimental methods are capable of determining BBB permeability, they are still
cost-ineffective and time-consuming. To complement the shortcomings of existing methods, we present a deep learning–based multi-
model framework model, called Deep-B3, to predict the BBB permeability of candidate compounds. In Deep-B3, the samples are encoded
in three kinds of features, namely molecular descriptors and fingerprints, molecular graph and simplified molecular input line entry
system (SMILES) text notation. The pre-trained models were built to extract latent features from the molecular graph and SMILES.
These features depicted the compounds in terms of tabular data, image and text, respectively. The validation results yielded from the
independent dataset demonstrated that the performance of Deep-B3 is superior to that of the state-of-the-art models. Hence, Deep-B3

holds the potential to become a useful tool for drug development. A freely available online web-server for Deep-B3 was established
at http://cbcb.cdutcm.edu.cn/deepb3/, and the source code and dataset of Deep-B3 are available at https://github.com/GreatChenLab/
Deep-B3.
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Introduction
The blood–brain barrier (BBB) is a multicellular vascular structure
that separates the central nervous system (CNS) from the periph-
eral blood circulation [1]. By tightly controlling the transport of
molecules and ions [2], BBB not only maintains brain homeostasis
but also protects the brain from intrusive xenobiotic chemical
compounds [2, 3]. Hence, BBB plays important roles in maintaining
the stability of the physiological environment of brain tissues
and protecting the CNS from infraction by harmful agents or
microorganisms in the blood. On the other hand, the ineffective
transportation of molecules across the BBB is also a big challenge
to drug design for CNS diseases [4–6]. It was reported that 98% of
the small-molecule drugs and almost all macromolecular drugs
could be blocked by BBB [7, 8]. Thus, the assessment of BBB
permeability is a prerequisite of drug discovery and development
for CNS diseases.

Over the past decade, numerous in vivo and in vitro assay meth-
ods have been proposed to evaluate the BBB permeability of chem-
icals [9–13]. For the in vivo methods, logBB and logPS are two gold-
standard measures for analyzing the BBB penetration of drugs
[10–13]. However, the in vivo methods are animal-based, labor-
intensive, low throughput and expensive. The in vitro methods

can be divided into cell-based and non-cell-based assays [11, 13].
Functional expression and metabolic capacity of BBB transporters
are the main advantages of the cell-based approaches [14]. By
using this method, not only passive diffusion can be measured
but also the active transport of the molecule through BBB can
be observed. However, there are also some limitations, such as
high cost and the differences of BBB between animal species
and humans. The representative technology of non-cell-based
permeability assays is the parallel artificial membrane perme-
ability assay (PAMPA) [15]. By modifying the lipid composition of
the artificial membranes, PAMPA has the ability to predict BBB
permeability [15, 16]. However, the non-cell-based permeability
method have not been proved suitable for the medium-to-high-
throughput operation [14–16].

Given that the above-mentioned experimental techniques are
time-consuming and cost-ineffective, a number of computational
methods have been proposed to characterize the BBB perme-
ability as well [17–21]. These methods can be mainly grouped
into two categories, namely quantitative methods and qualitative
methods. The quantitative methods aim to predict the properties
describing the BBB permeability of compounds [22, 23], such as
logBB and logPS [24, 25]. The qualitative methods are machine
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learning based methods that classify whether a given compound
is BBB permeable (BBB+) or not (BBB−). However, the performance
of qualitative models for characterizing the BBB permeability
of compounds depends on the selected representations of the
molecule.

The most commonly used molecule representations were
molecular descriptors and fingerprints [26]. Molecular descriptors
describe molecules based on experimental or theoretical proper-
ties. According to the level of molecular representation required
for calculating the descriptor, the molecular descriptors can be
classified into three categories, namely one-dimensional (1D),
two-dimensional (2D) or three-dimensional (3D) [26]. Molecular
fingerprints are fixed-length bit strings that encode the structural,
topological or functional features of a molecule. Different types of
fingerprints differed in the form that a molecule is decomposed,
such as the size of the representation and the hashing algorithm
[27, 28].

In the past decade, a series of machine learning methods have
been proposed to qualitatively predict BBB permeability based on
molecular descriptors and fingerprints representations. In 2005, Li
et al. trained an SVM model based on 415 molecules and reported
an accuracy (ACC) of 0.837 [17]. Later on, Martins et al. established
a series of random forest and SVM models based on a dataset
of 1970 compounds and obtained the best ACC of 0.885 in 5-
fold cross-validation test and 0.947 in the external validation
test [18]. To improve predictive ACC, Wang et al. constructed an
ensemble model with 1437 2D molecular descriptors and six types
of molecular fingerprints [19]. Their model yielded an ACC of 0.975
and 0.907 in the training and test sets, respectively [19]. In 2013,
Yan et al. trained several models by using multilinear regression,
SVM and artificial neural network methods to predict the logBB
value of 320 compounds [20]. By encoding the compounds using
the dragon software [29], Na et al. proposed a lightGBM-based
model and obtained an ACC of 0.90 for qualitatively predicting
74 independent compounds [30]. Recently, Liu et al. proposed
an ensemble-learning model for predicting BBB permeability in
which the samples were encoded by using nine molecular fin-
gerprints and obtained an ACC of 0.78 in external validation [21].
It was found that the above-mentioned studies were only built
based on molecular descriptors or fingerprints to predict the BBB
permeability. None of them combined the features from different
modalities which cover the chemical diversities of compounds.

Simplified molecular input line entry system (SMILES) has been
widely used as a standard representation of compounds and can
represent the functional substructures and express the structural
differences in a richer feature space [31]. The success of deep
neural networks in natural language processing (NLP) makes the
SMILES-based representations become a research focus of chem-
informatics [32, 33]. Since the SMILES is sequential and composed
of text, the pre-trained models, such as Transformer and BERT,
have been used to extract the latent features from SMILES [34–
36].

Inspired by the remarkable achievements of deep learning,
the pre-training strategy was also used to deduce the graph
representations of molecules [37–39]. Based on the molecular
graphs, convolutional neural network (CNN) and transfer learning
method were proposed for virtual screening [40]. It was found that
CNN could automatically obtain features from the graphs and can
avoid the extraction of hand-crafted features.

Hence, in the present study, a deep learning–based multi-model
framework, called Deep-B3, was proposed to predict BBB perme-
ability. In Deep-B3, the compounds were encoded by using molecu-
lar descriptors and fingerprints, molecular graph and SMILES text

notation. For balancing the number of samples between the posi-
tive and negative datasets, each compound in the negative dataset
was amplified by enumerating its different SMILES formats. When
tested on the independent dataset, it was found that the Deep-
B3 outperforms the state-of-the-art models for predicting BBB
permeability.

Materials and Methods
Data collection and preparation
In this study, the training dataset, including compounds with
experimentally confirmed BBB permeability, was built by integrat-
ing the data from recent studies and online repositories [18, 21,
30, 41–43]. After representing them by SMILES, the collected com-
pounds were curated to eliminate duplicates, inorganic material
and mixtures. Accordingly, a dataset containing 7224 compounds
was obtained in which 5483 were positive samples (BBB+) and
1741 were negative ones (BBB−). Both lightBBB [30] and Liu et al.’s
method [21] were built on the subset of this dataset.

The independent dataset used for testing the proposed method
was retrieved from previous publications [21, 44–46]. Among
them, 213 molecules (154 BBB+ and 59 BBB−) were constructed
by Liu et al. [21], 31 traditional Chinese medicine molecules (13
BBB− and 18 BBB+) were experimentally verified by Ai et al. [44], 1
BBB− molecule (hexamethonium bromide) was from Shaw et al.’s
work [45] and the rest 7807 molecules were collected from the
B3DB [46].

In most cases, one drug molecule can be represented with
multiple SMILES strings. Accordingly, many duplicated drugs
were represented by different SMILES, which will lead to the
redundancy of the training and testing dataset. Canonicalization
is a method to ensure that each molecule corresponds to a unique
canonical SMILES. Hence, all SMILES strings were converted
into canonical SMILES to remove duplicated compounds in the
training and testing datasets, respectively. Finally, we obtained a
non-redundant training dataset, including 4364 molecules with
3125 BBB+ and 1239 BBB−, and a testing dataset, including 2670
molecules with 1258 BBB+ and 1412 BBB−.

Multiple SMILES-based augmentation
If a machine learning model is trained on an imbalanced dataset,
its performance will be negatively affected. Therefore, an aug-
mentation approach was used to balance the positive and neg-
ative training samples. The augmentation was implemented by
renumbering atoms using ‘MolToSmiles’ in RDKit (https://www.
rdkit.org/) with the parameter ‘canonical = False’. For a compound
in BBB− dataset with multiple SMILES formats, two more SMILES
strings were randomly extracted and selected as the negative
samples. After performing this procedure, a balanced training
dataset containing 3125 positive and 3692 negative samples was
built. The training dataset was randomly divided into two parts
with a ratio of 8:2, which were used to fit the model and validate its
performance while tuning model hyperparameters, respectively.
The detail information about the training and testing dataset was
presented in Table 1. The datasets are available at http://cbcb.
cdutcm.edu.cn/deepb3Static/data/data.tar.gz.

Feature representations for molecules
The samples in the dataset were encoded by using three kinds
of features, namely tabular data, text and image. By using RDKit,
the 208 1D/2D molecular descriptors, 167 bits MACCS fingerprints
[47] and 1024 bits Morgan fingerprints [48] were obtained for each
molecule, which were then transferred into tabular data. The
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Figure 1. An illustration for the framework of Deep-B3. (A) The workflow of the Deep-B3 model. (B) The diagram of the CNN model. (C) The diagram of
the NLP model.

canonical SMILES string of each molecule was used as the text fea-
ture. Based on the SMILES string, by running the rdkit.Chem.Draw
package in RDKit, the molecular graph of each molecule was
obtained and regarded as the image feature. The images with
smaller or bigger sizes will result in low ACC or more memory
usage [49, 50]. In order to standardize the distance scale, the
images were resized to 224 × 224 pixels which has been widely
used in the field of image analysis [51–53].

Performance evaluation strategies
The proposed model was evaluated by using both threshold-
dependent and -independent metrics. The four threshold

dependent metrics [54–56], namely sensitivity (SN), specificity
(SP), ACC and Matthews correlation coefficient (MCC) are defined
in Eq. (1).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SN = TP
TP+FN

SP = TN
TN+FP

ACC = TP+TN
TP+TN+FN+FP

MCC = TP ∗TN−FP ∗FN√
(TN+FP)(TN+FN)(TP+FP)(TP+FN)

, (1)

where TP, TN, FP and FN represent the number of true positive,
true negative, false positive and false negative, respectively. The
threshold independent metric is the area under the receiver oper-
ating characteristic curve (AUC) [57]. The value of AUC ranges
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from 0.5 to 1. The higher the value of the AUC, the better perfor-
mance is implied.

Result and Discussion
Architecture of the Deep-B3

By integrating the three kinds of features, namely molecular
descriptors and fingerprints, molecule graph and SMILES string, a
deep learning–based multi-model framework, called Deep-B3, was
developed to predict the BBB permeability. The schematic diagram
of Deep-B3 is depicted in Figure 1A. The Fast.AI 1.0 (https://fastai1.
fast.ai/) was applied to build the frameworks. The pre-trained
CNN model was used to extract features from the molecule
graphs. A pre-trained NLP model was used to extract features from
SMILES. Subsequently, the features obtained from the CNN and
NLP were concatenated with the tabular features generated based
on molecular descriptors and fingerprints. A self-attention layer
monitored the key features for predicting BBB permeability and
fed the results into a series of fully connected (FC) layer to make
final predictions.

The ResNet-50 CNN [58] with 50 layers deep was used to build
up the framework to automatically extract the features from
molecule graph data. The architecture of the modified ResNet-50
model is shown in Figure 1B. The model begins with a convolution
(Conv) with a kernel size of 7∗7, followed by 16 ResNet blocks (Res).
In each Res, there are three sequential Conv with the kernel size
of 1∗1, 3∗3 and 1∗1, respectively. Then, the output was processed
by using the AdaptiveConcatPool2d, followed by the batch nor-
malization layer (BN), dropout and FC layers. Finally, the latent
features were obtained from the molecule graph data.

The language model (LM) Average Stochastic Gradient Descent
Weight-Dropped Long Short-Term Memory (AWD-LSTM) [59] was
used to extract features from the SMILES text notations. As shown
in Figure 1C, the model contains two blocks, namely target task
LM fine-tuning classifier and target task classifier. Each block
consists of an encoder layer and a decoder layer. The encoder layer
includes three LSTM that can learn a compact representation
from the input. The three LSTM in decoder layer share the same
weights with that of encoder layer. To achieve the latent features

Table 1. Detail information about the dataset used in this study

Sample Raw training Training Testing

BBB+ 3125 3125 1258
BBB− 1239 3692 1412

from SMILES, the decoder layer in the target task classifier block
was replaced by a BN layer followed by a FC layer.

Model training and parameter optimization
For training a deep learning model, the most important hyper-
parameter is the learning rate. The layer-specific learning rate
method was applied to overcome the slow learning. First, the
proposed model was divided into seven layers (Table S1 available
online at http://bib.oxfordjournals.org/), and then the best learn-
ing rate of each layer was determined by using the lr_find method.
With the gradual unfreezing, the specific learning rate was used to
tune the weights for each layer. To prevent overtraining, the early
stopping technique was used to stop training when the valid loss
does not decrease within five epochs.

The feature dimension of the CNN and NLP model also affects
the performance of Deep-B3. In order to obtain the best com-
bination, we optimized the dimensions of the output features
of CNN and NLP. At first, we set the dimension of the output
features from the NLP to 64 and then tested the models when the
dimension of the output features from CNN were 64, 128, 256, 512
and 1024, respectively. The performances of those models on the
testing dataset are shown in Figure 2 and Table S2 available online
at http://bib.oxfordjournals.org/. Although the best AUC were
observed for the models with the CNN output feature dimension
of 512 and 128, the values of the metrics defined in Eq. (1) of the
former model were higher. Hence, we set the dimension of the
output features from the CNN model to 512 and tested the models
when the dimension of the output features from NLP were 1024,
512, 256 and 128, respectively. However, the overall performances
were not improved at all (Figure 2 and Table S2 available online
at http://bib.oxfordjournals.org/). Accordingly, the best model was
built based on the 512 and 64 output features from CNN and NLP
models, respectively.

Figure 2. The performance of the models by combining the different dimensions of features output from CNN and NLP. The symbol ∗ indicated the
highest value.
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Figure 3. The PCA score plot of the first two PCs. (A) The PCA of the image features generated by the CNN model. (B) The PCA of the tabular features.
(C) The PCA of the SMILES features extracted by the NLP model. (D) The PCA of the combined features.

Model evaluation and comparison with baseline
methods
The proposed Deep-B3 method was then tested on the indepen-
dent dataset, and we obtained an AUC of 0.83 with the SN of
85%, SP of 64% and ACC of 0.74 (Table 2). To further demonstrate
its superiority, we also compared the performance of Deep-B3

with the baseline method lightBBB [30]. Their performances for
predicting the BBB permeability are listed in Table 2. It was found
that Deep-B3 outperforms lightBBB in terms of most of the metrics
defined in Eq. (1). The MCC and ACC are 6% and 4% higher than
that of lightBBB, respectively. Although the SN of Deep-B3 is 1%
lower than that of lightBBB, its SN was 9% higher. This result

Table 2. Comparison of Deep-B3 with baseline methods for
predicting BBB permeability

Model SN (%) SP (%) MCC ACC AUC

lightBBB 86 55 0.43 0.70 –
Deep-B3 85 64 0.49 0.74 0.83
Deep-B3(Raw) 95 41 0.41 0.66 0.80

Note: Raw means by using the raw SMILES without augmentations.

indicates that Deep-B3 is an excellent tool for predicting BBB
permeability and holds the potential to become a useful tool of
drug development.
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Figure 4. The performance of the models built based on different kinds of features for predicting the BBB permeability. (A) The values of the threshold
dependent and independent metrics obtained from different models. (B) The ROC curves obtained from different models.

The multiple SMILES-based augmentation strategy has been
used to improve the performance of molecular property predic-
tion [36, 60]. To validate whether this strategy can also improve
the performance of BBB permeability prediction, we compared
the performance of Deep-B3 built based on the augmentation
dataset and raw dataset. As indicated in Table 2, the model based
on the augmented dataset outperforms that on the raw dataset.
Compared with the model built based on raw dataset, the 8%
and 3% improvements in terms of ACC and AUC were observed
for the model based on the augmented dataset. Although the
augmented SMILES share the same molecular descriptors and
fingerprints with the raw SMILES, they differed in terms of
molecule graph and SMILES string (Figure S1 available online
at http://bib.oxfordjournals.org/). These results demonstrated
that the SMILES-based augmentation strategy can improve the
performance of Deep-B3 for BBB permeability prediction.

Feature contribution analysis
In order to interpret the latent features generated by the CNN and
NLP model, the principal component analysis (PCA) method was
used to reduce the feature dimensionality in an interpretable way.
In the PCA plot, features contributing similar information or with
high correlations will be clustered together. The PCA results are
shown in Figure 3.

As shown in Figure 3A, the first two principal components (PCs)
of the image features output from the CNN model explains 20.2%
of the variation between BBB+ and BBB−. Therefore, if only using
the molecular graph, it could not satisfactorily identify the BBB+
residing in the overlapping region. The first two PCs of the tabular,
text and concatenating features explained 7.1%, 36.9% and 8.3%
of the overall variation of between BBB+ and BBB− (Figure 3B–D),
respectively. Although some BBB+ reside in the clusters covered
by BBB−, a specific cluster of BBB+ is still noticeable in the PCA
results. The PCA results indicate that the three kinds of features
may contribute differently for distinguishing BBB+ from the BBB−
(Figure 3).

In order to further demonstrate the contribution of tabular,
image and text features to the Deep-B3, we compared the per-
formances of the models based on different combinations of

these features in the independent dataset. The related results
are shown in Figure 4. Among the models based on the single
feature, although the model based on the image obtained poor
performance than others, it has the highest SP value (Figure 4A,
Table S3 available online at http://bib.oxfordjournals.org/). For the
other two models, the model constructed based on text features
had the highest SN, and the model on tabular features obtained
the best ACC and AUC. For the models combining two kinds of
features, the models based on the image feature combined with
either tabular or text yielded the higher SN than that based on
the tabular-text feature. The model based on tabular-text feature
exhibits the superior performance in terms of SP, MCC, ACC
and AUC. However, none of these models is superior to Deep-
B3. This result indicates that tabular, image and text features all
contributed positively to the prediction of BBB permeability and
that the tabular feature is most essential.

Model interpretation based on attention weights
For each molecule, the feature importance was determined
according to its attention weight, which was calculated by taking
the average of the attention values in a given column of the
attention matrix. The attention weights were then visualized to
investigate the impact of different kinds of features on predicting
the BBB permeability. For example, the attention weight for
recognin is shown in Figure 5. It was found that the bit-397
substructure from the Morgan fingerprints exhibits the highest
weight in all features. In addition, the high attention weights
were also observed for the image and text features, indicating
that they were important for BBB permeability prediction as
well.

The attention weights were also used to monitor the key fea-
tures for BBB permeability prediction. The feature importance was
defined by the average of the attention weight of all molecules. In
Deep-B3, 1975 features were fed into the attention layer, including
512 features from the CNN model, 64 features from the NLP mode
and 1399 tabular features.

The top 20% (395) features are tabular features, including 338-
bits Morgan fingerprints and 14-bits MACCS fingerprints. Their
distribution differences between BBB+ and BBB− were assessed
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Figure 5. Visualization of attention weights. An example of attention weight visualization for the molecule recognin.

Figure 6. Distribution of Morgan fingerprints substructures in BBB+ and BBB− samples. The x-axis is the substructural bit, while the y-axis is the count
numbers of the bit in the independent testing dataset. The color dot indicates the −log10P-value.

by using chi-square test (P < 0.05). The top 40 substructures
with significantly distinct distributions are shown in Figure 6,
and their appearances are provided in Table S4 available
online at http://bib.oxfordjournals.org/. For example, the bit-22,

bit-754 and above-mentioned bit-397 substructures differed most
significantly between the BBB+ and BBB−. The bit-22 substructure
is present in over 2.94% of all BBB+ samples and only in 0.57%
of BBB− samples. On the contrary, about 4.67% of BBB− have
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Figure 7. Screenshots for the interface and result page of the Deep-B3 web server.

the bit-754 substructure, while this proportion is only 1.43% for
BBB+. These results provide a descriptive summary to indicate
the contribution of substructures to BBB permeability prediction.

Web server implementation
For facilitating researchers to implement the proposed Deep-B3

model, an easy-to-use web server was established at http://cbcb.
cdutcm.edu.cn/deepb3/. The server interface is shown in Figure 7.
To obtain the desired results, users only need to paste or upload
the SMILES strings of the compounds of interested. If the SMILES
string is unknown, it could be obtained by drawing the molecule
in the built-in molecule editor tool JSME [61]. Finally, by clicking
the Submit button, the results will be shown in a new page.

Conclusion
In this study, we proposed a deep learning-based model, called
Deep-B3, to predict the BBB permeability of compounds. The
modified ResNet50 and AWD-LSTM model were used to extract
latent features from molecules graph and SMILES, respectively.
By integrating the latent features with the tabular features and
feeding them to an attention layer followed by a series of FCs, the
Deep-B3 will determine whether a compound is BBB+ or BBB−.

Experimental results from the independent dataset demon-
strated that Deep-B3 outperformed existing baseline models in
terms of both threshold-dependent and -independent metrics,
indicating its superiority and robustness for predicting BBB per-
meability. The attention weight was used to quantify the impor-
tance of features. The substructural importance analysis revealed
the difference of key molecular substructures between BBB+ and

BBB−. The observed substructural differences might contribute to
the accurate prediction of BBB permeability.

For the convince of scientific community, the source code of
Deep-B3 is provided at https://github.com/GreatChenLab/Deep-
B3. As the implementation of the proposed Deep-B3, a freely acces-
sible web-server has also been provided at https://cbcb.cdutcm.
edu.cn/deepb3. We believe that Deep-B3 holds the potential to
become a useful tool for drug development.

Key Points

• A multi-model framework, called Deep-B3, was proposed
to predict the BBB permeability of compounds.

• Pre-trained models were used to learn the latent features
from the molecule graph and SMILES text notations.

• Comparative results demonstrate that Deep-B3 signifi-
cantly outperforms the baseline methods for BBB perme-
ability prediction.
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