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Abstract

Long non-coding RNA (lncRNA) plays important roles in a series of biological processes. The transcription of lncRNA is regulated
by its promoter. Hence, accurate identification of lncRNA promoter will be helpful to understand its regulatory mechanisms. Since
experimental techniques remain time consuming for gnome-wide promoter identification, developing computational tools to identify
promoters are necessary. However, only few computational methods have been proposed for lncRNA promoter prediction and their
performances still have room to be improved. In the present work, a convolutional neural network based model, called DeepLncPro,
was proposed to identify lncRNA promoters in human and mouse. Comparative results demonstrated that DeepLncPro was superior
to both state-of-the-art machine learning methods and existing models for identifying lncRNA promoters. Furthermore, DeepLncPro
has the ability to extract and analyze transcription factor binding motifs from lncRNAs, which made it become an interpretable model.
These results indicate that the DeepLncPro can server as a powerful tool for identifying lncRNA promoters. An open-source tool for
DeepLncPro was provided at https://github.com/zhangtian-yang/DeepLncPro.
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Introduction
Long non-coding RNA (lncRNA) is a kind of non-coding RNAs with
the length greater than 200 nucleotides [1]. Although they lack the
protein-coding potential, lncRNAs play important roles in various
of biological processes [2, 3], such as the regulation of cell cycle,
apoptosis, transcription, splicing, translation, genomic rearrange-
ment and genetic imprinting [4–9], etc. Furthermore, a growing
number of evidences demonstrated that lncRNAs also associated
with human diseases and even cancer development [10, 11]. For
example, the abnormal expression of lncRNA is associated with
the development of cardiovascular diseases and Huntington’s
disease [12, 13]. Hence, in order to reveal their biological func-
tions, more researches on lncRNAs are needed and necessary [14].
Knowing about the origins of lncRNA is the first step to illustrate
their regulatory roles. A promoter is a regulatory element located
upstream of the transcription start site (TSS) [15], which initiates
and regulates the transcription of RNA through the binding of
transcription factors [16, 17]. Therefore, accurately identifying the
promoter of lncRNA will be not only helpful to determine its
origins, but also to understand its regulatory mechanisms.

Experimental methods for identifying promoters are mainly
mutation analysis and immunoprecipitation analysis [18, 19].
Although these methods are gold standard for determining
promoters, they are still time consuming and cost-ineffective
for genome wide analysis [20–22]. Fortunately, a large amount
of data was generated from these experiments, especially for
Homo sapiens and Mus musculus, which are valuable resources
for developing in computational methods for identifying lncRNA
promoters. In 2019, Alam et al. proposed a deep learning based
method, called DeepCNPP [23], for identifying human lncRNA
promoters. However, neither the web-server nor source code
was provided for DeepCNPP, which hindered its applications in
lncRNA promoter identification. Later on, Tang et al. proposed
a freely accessible web-server ncPro-ML for identifying lncRNA
promoters in human and mouse [24]. Unfortunately, ncPro-ML
is only based on hand-crafted features and is lack of biological
interpretability. In conclusion, both DeepCNPP and ncPro-ML fall
short in interpreting the model from biological perspectives, and
their predictive accuracies for identifying lncRNA promoters
still have room for improvement. Therefore, there is a need
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Table 1. Detail information of the datasets used in this study

Name Training dataset Validation dataset Testing dataset

Positive Negative Positive Negative Positive Negative

Human 1403 1403 468 468 468 468
Mouse 1846 1846 616 616 615 615

to develop interpretable models to accurately identify lncRNA
promoters.

We therefore proposed a convolutional neural network (CNN)-
based method, called DeepLncPro, to identify lncRNA promoters
in human and mouse. In DeepLncPro, the sequences were
encoded by using one-hot, nucleotide chemical properties and
dinucleotide physical–chemical properties. In order to obtain
a robust model, the hyperparameter optimization process was
performed to obtain optimal hyper-parameters of CNN. The
evaluations based on independent test dataset showed that
DeepLncPro outperformed state-of-the-art machine learning
methods. In addition, comparative results demonstrated that
DeepLncPro is superior to existing methods for predicting lncRNA
promoters. DeepLncPro also has the benefits in the biological
interpretation and is capable of capturing sequence motifs,
which can be matched to transcription factor binding motifs. For
facilitating researchers to implement DeepLncPro, the command-
line version of DeepLncPro was available at https://github.com/
zhangtian-yang/DeepLncPro. We expect that DeepLncPro will be
helpful for the identification of lncRNA promoters.

Materials and methods
Dataset
In this study, we constructed the benchmark dataset in a sim-
ilar way to our previous work [24]. The promoter sequences of
lncRNA from human and mouse were obtained from the Eukary-
otic Promoter Database (EPD) [25]. Considering that RNA poly-
merases usually bind in the upstream regions of the TSS [26],
positive samples were taken around the TSS and contained more
upstream regions. Negative samples were taken from the down-
stream regions away from the TSS. Considering that core pro-
moter elements usually locate in the upstream region of the TSS
and the length of the upstream region may have an impact on
the model performance, we constructed seven datasets based on
sequence lengths from 61 to 301 bp with a step of 40 bp. For a
dataset with the sequences of n bp length, positive samples were
extracted from (n-20) bp upstream of the TSS to 20 bp downstream
of the TSS. Negative samples were extracted in the same way, but
1000 bp downstream of the TSS. The ratio of positive to negative
samples was kept at 1:1. For each dataset, 60% of the samples
were randomly selected out and used as training data to train
the model, 20% were used as validation data to tune the model
parameters, and the remaining 20% were used as test data to
evaluate the final model (Figure 1A). The details of the datasets
were shown in Table 1.

Feature representation algorithms
For the convenience of feature description, a DNA sequence were
denoted as S = D1D2 . . . DL, where L is the length of the sequence
and Di ∈ {A, T, G, C} represents the deoxynucleotide at the
i-th position in the sequence. The one-hot, nucleotide chemical

properties (NCP) and dinucleotide physical–chemical properties
were used to encode the samples in the dataset, Figure 1B.

One-hot
One-hot encoding method can effectively represent DNA
sequences [27, 28] and encode deoxynucleotides into binary
vectors. On the basis of this method, ‘A’ was encoded as (1, 0, 0, 0),
‘T’ as (0, 1, 0, 0), ‘G’ as (0, 0, 1, 0) and ‘C’ as (0, 0, 0, 1). Hence, a DNA
sequence of length L can be transformed into a 4 × L matrix A1.

A1 =

⎡
⎢⎢⎣

one − hot1(1) · · · one − hot1(L)

...
. . .

...
one − hot4(1) · · · one − hot4(L)

⎤
⎥⎥⎦ (1)

NCP
The four deoxyribonucleotides carry different bases that differ
in ring structure, hydrogen bond strength and chemical function
[29]. In terms of the number of rings, ‘A’ and ‘G’ contain two rings,
while ‘C’ and ‘T’ contain one ring. In terms of hydrogen bond
strength, a weak hydrogen bond is formed between ‘A’ and ‘T’,
while a strong hydrogen bond is formed between ‘C’ and ‘G’. In
terms of chemical composition, ‘A’ and ‘C’ belong to the amino
group, while ‘G’ and ‘T’ belong to the ketone group. Accordingly,
‘A’ was encoded as (1, 1, 1), ‘T’ as (0, 1, 0), ‘G’ as (1, 0, 0) and ‘C’ as
(0, 0, 1):

NCP1(i) =
{

1 if Di ∈ {A, G}
0 if Di ∈ {C, T} , NCP2(i) =

{
1 if Di ∈ {A, T}
0 if Di ∈ {C, G} ,

NCP3(i) =
{

1 if Di ∈ {A, C}
0 if Di ∈ {G, T} (2)

where i is the position of the deoxynucleotide in the sequence;
NCP1, NCP 2 and NCP3 represent the three chemical properties,
respectively. By using NCP, a DNA sequence of length L can be
transformed into a 3 × L matrix A2.

A2 =

⎡
⎢⎢⎣

NCP1(1) · · · NCP1(L)

...
. . .

...
NCP3(1) · · · NCP3(L)

⎤
⎥⎥⎦ (3)

Dinucleotide physicochemical properties (DPCP)
Continuous deoxynucleotide combinations have different physic-
ochemical properties, which is an important feature of genome
functional element identification [30] and has been used in pro-
moter prediction [31, 32]. In this study, six DPCP, namely twist,
tilt, roll, shift, slide and rise, were used to encode DNA sequences.
Their values were obtained from previous work [33]. Snice their
values varied in different ranges, the min-max normalization
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Figure 1. An overview of DeepLncPro. (A) Data sets. The dataset contains 2339 positive and 2339 negative samples from human and 3077 positive and
3077 negative samples from mouse. Each sample was intercepted at different lengths from 61 bp to 301 bp with a step of 40 bp. (B) Feature encoding.
These samples were encoded by using three feature encoding methods. The encoded features were merged into a 13 × L matrix. (C) Framework of
DeepLncPro. DeepLncPro was built based on convolutional neural network. Each sample got a prediction score, ranging from 0 to 1. If the score was
>0.5, the sequence is predicted as a lncRNA promoter; otherwise, a non-lncRNA promoter.

method was used to scale them into a range of [0,1]. Based on
the six DPCP, a DNA sequence of length L can be converted into
a 6 × (L − 1) matrix. In order to make sure that the number of
columns of the matrix is the same as that of matrix A1 and A2,
a sliding dimer window algorithm was used to calculate the DPCP
for each nucleotide [34],

DPCPn(i) = Xn
(
Di−1Di

) + Xn
(
DiDi+1

)
2

(4)

where DPCPn(i) represents the n-th physicochemical property for
the i-th nucleotide, Xn represents the n-th (n = 1, 2, . . . ,6) dinu-
cleotide physicochemical properties, which takes the front dimer
Di − 1Di and the behind dimer DiDi + 1 as input, respectively. The
two terminal nucleotides D1 and DL only rely on the data of din-
ucleotides at both ends, respectively. Accordingly, a 6 × L matrix
A3 was obtained, which depicts the sequence in terms of physic-
ochemical properties.

A3 =

⎡
⎢⎢⎣

DPCP1(1) · · · DPCP1(L)

...
. . .

...
DPCP6(1) · · · DPCP6(L)

⎤
⎥⎥⎦ (5)

Model architectures
In recent years, CNN has been widely used in biological sequence
analysis [35–38]. In the present work, we employed CNN to
build the DeepLncPro model as well. The implementation of
DeepLncPro was based on the deep learning library Pytorch
[39]. DeepLncPro contains two 1D convolutional layers with 24
filters with the size of 10, which were determined by performing
hyperparameter optimization. Since the rectified linear unit
(ReLU) can keep the input values that are positive [40], it was
used to combat the vanishing gradient problem. The framework
of the proposed model DeepLncPro was shown in Figure 1C.

In DeepLncPro, the convolution operation was equivalent to
using a sliding window to extract motifs from the sequence with

high activation values. Hence, the first convolutional layer detects
motifs in the sequence, and the second convolutional layer depicts
the associations between the extracted motifs from a longer scale
[41]. The subsequent layer of the model is a fully connected layer
and is used to integrate the information of the whole sequence.
Finally, the probability obtained from the sigmoid function was
used to make predictions. The first convolutional layer can be
mathematically represented as the following [42, 43],

Conv(M)i,j = ReLU
(∑S−1

s=0

∑N−1

n=0
Wj

s,nMi+s,n

)
(6)

where M indicates matrix encoding the sequence, i is the index
of the output location and j is the index of the filter. Each con-
volutional filter Wj is an S × N matrix, where S is the filter size
(determined by hyper-parameter optimization) and N is the num-
ber of input channels (determined by encoding strategy). For the
first convolutional layer, N is the input dimension and equals to
13 (the combination of the three coding methods). The ReLU is
expressed as the following,

ReLU(x) =
{

x, if x ≥ 0
0, if x < 0

(7)

Similarity, the convolution of the second layer can be mathe-
matically expressed as,

Conv
(
M′)

i,j = ReLU
(∑S′−1

s=0

∑N′−1

n=0
W′ j

s,nM′
i+s,n

)
(8)

where M′ is a 24 × ((L − S)/k + 1) matrix combined from the output
of the first convolution layer, i is the index of the output location
and j is the index of the filter. k is the convolution stride and
equals to 1. Each convolutional filter W′ j is an S′ × N′ matrix,
where S′ is the filter size, N′ is the number of filters in the
first convolutional layer and equals to 24 (determined by hyper-
parameter optimization).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac447/6754194 by Suzhou U

niversity user on 10 O
ctober 2022



4 | Zhang et al.

Hyper-parameter optimization and model
selection
In order to obtain models with better performance and generaliza-
tion capability, we performed hyper-parameter optimization. To
make the training process more stable, the Adam algorithm [44]
was applied to automatically determine the learning rate based
on the batch gradient descent. The random search method was
used to determine the hyperparameters including learning rate,
number of neurons, size of convolutional layers and number of
filters.

In the hyper-parameter optimization process, we first trained
a basic model by selecting a set of hyperparameters within a
reasonable range (see details in Supplementary Table S1 available
online at http://bib.oxfordjournals.org/). Then, by keeping the
other hyperparameters fixed, a certain hyperparameter was
searched in the given range. According to the performance
obtained from the validation dataset, an optimal hyperparameter
was selected. This process was repeated until all hyperparameters
were optimized. Once all hyperparameters were determined,
they were used to train DeepLncPro again on the training and
validation datasets. It should be pointed out that only the
combination of hyperparameters with the highest accuracy in
the validation set was retained.

Performance evaluation
The threshold dependent metrics, namely sensitivity (Sn), speci-
ficity (Sp), accuracy (Acc) and Matthew’s correlation coefficient
(MCC) [45] were used to evaluate the performance of the model,
which were defined as the following:

Sn = TP
TP+FN × 100%

Sp = TN
TN+FP × 100%

Acc = TP+TN
TP+TN+FP+FN × 100%

MCC = TP∗TN−FP∗FN√
(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

(9)

where TP, FN, TN and FP denote true positive, false negative, true
negative and false positive, respectively.

In addition, we also used the receiver operating characteristic
(ROC) curve [46] and the area under the curve (AUC) as the thresh-
old independent metrics to objectively evaluate the performances
of DeepLncPro and existing methods.

Motif extraction
In order to make DeepLncPro interpretable, we used the same
method as in deepRAM [41] to extract the motifs from its first
convolutional layer. For each filter in the first convolutional layer,
according to our preliminary test, we extracted sequence seg-
ments, which could activate the filter with the activation value
greater than 65% of the filter’s maximum value. By stacking these
segments, we computed the nucleotide frequencies and obtained
the position weight matrix (PWM) which was considered as the
local motif captured by DeepLncPro. Afterwards, the correlation
between the PWM and the transcription factor binding motifs in
the JASPAR [47] database was calculated by using TOMTOM [48].

Result and discussion
Effect of sequence length and encoding schemes
on model performance
To determine the optimal sequence length and encoding schemes
for predicting lncRNA promoters, the effects of sequence

lengths and encoding schemes on the model performance were
investigated. For this aim, we built different models based on
the combinations of different types of sequence lengths and
encoding schemes. In order to obtain a model with satisfactory
generalizability, the training data from human and mouse were
combined together to train the models. For each model, its
hyper-parameters were optimized according to the procedures
introduced in Hyper-parameter optimization and model selection
section. The accuracies of the models for identifying human and
mouse lncRNA promoters in the validation set were shown in
Figure 2. The corresponding sensitivity, specificity and Matthew’s
correlation coefficient were listed in Supplementary Tables S2
and S3 available online at http://bib.oxfordjournals.org/. It
was found that the model based on the sequence length of
181 bp and the combinations of the three kinds of encoding
schemes obtained the best accuracies of 87.07% and 87.73%
for identifying lncRNA promoters in both human and mouse,
respectively. Accordingly, based on the above obtained optimal
sequence length (181 bp), combinational encoding method and
the best hyper-parameters (Supplementary Table S4 available
online at http://bib.oxfordjournals.org/), the DeepLncPro was
developed for predicting lncRNA promoters in both human and
mouse. In addition, we also evaluated the models trained by
the data either from human or mouse and reported the results
in Supplementary Figure S1, Supplementary Tables S5 and S6
available online at http://bib.oxfordjournals.org/. The obtained
results demonstrated that the performances of these models
were all lower than that of DeepLncPro.

Comparison with classical machine learning
methods
Considering that machine learning methods were widely used in
DNA sequence elements identification, we compared DeepLncPro
with five classical ML methods, namely random forest (RF),
logistic regression (LR), k-nearest neighbors (KNN), support vector
machine (SVM) and eXtreme Gradient Boosting (XGBoost). The
three input matrices of DeepLncPro were flattened into a 13 L
dimensional vector and used as the input of RF, LR, KNN, SVM
and XGBoost. The evaluating metrics of DeepLncPro and ML
models for identifying human and mouse lncRNA promoters
in the test dataset were listed in Table 2. DeepLncPro obtained
the best accuracies of 86.21% and 86.82% for identifying human
and mouse lncRNA promoters, respectively. We also plotted the
ROC curves of DeepLncLoc and the machine learning methods in
Figure 3. It was found that DeepLncPro obtained the best AUCs
of 0.928 and 0.931, and outperformed the other machine learning
models for predicting lncRNA promoters in both human and
mouse.

Comparison with the existing predictor
To further illustrate its superiority, we compared DeepLncPro
with the existing predictor ncPro-ML [24]. For a fair compari-
son, the two predictors were all validated on the same test set.
As shown in Table 3, the accuracy of DeepLncPro were 4.57%
and 3.74% higher than that of ncPro-ML for identifying human
and mouse lncRNA promoters, respectively. The corresponding
sensitivity, specificity and Matthew’s correlation coefficient were
improved 8.47%, 0.65% and 0.10 in human, and 7.12%, 0.36%
and 0.08 in mouse, respectively. These results demonstrated that
the DeepLncPro is more superior to identify human and mouse
lncRNA promoters.
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Figure 2. Performance of the models based on different sequence lengths and encoding schemes. The vertical coordinate represents the sequence length
ranging from 61 to 301 bp. The horizontal coordinate represents different encoding schemes, including one-hot, NCP, DPCP and their combinations. (A)
The predictive accuracies of different models for identifying lncRNA promoters in human; (B) The predictive accuracies of different models for identifying
lncRNA promoters in mouse.

Table 2. Performance of DeepLncPro and different machine learning models for identifying lncRNA promoters in test set

Method Species Sn(%) Sp(%) Acc(%) MCC

RF Human 85.90% 83.55% 84.72% 0.69
Mouse 82.60% 83.74% 83.17% 0.66

LR Human 83.97% 78.63% 81.30% 0.63
Mouse 83.25% 81.63% 82.44% 0.65

KNN Human 81.41% 62.18% 71.79% 0.44
Mouse 86.83% 66.50% 76.67% 0.54

SVM Human 82.91% 79.49% 81.20% 0.62
Mouse 84.72% 85.37% 85.04% 0.70

XGBoost Human 85.26% 83.33% 84.29% 0.69
Mouse 85.69% 85.53% 85.61% 0.71

CNN Human 89.74% 82.69% 86.22% 0.73
Mouse 88.78% 84.88% 86.83% 0.74

Table 3. Comparison of the prediction performance of DeepLncPro with ncPro-ML based on the test set

Species Name Sn(%) Sp(%) Acc(%) MCC

Human ncPro-ML 81.27% 82.04% 81.65% 0.63
DeepLncPro 89.74% 82.69% 86.22% 0.73

Mouse ncPro-ML 81.66% 84.52% 83.09% 0.66
DeepLncPro 88.78% 84.88% 86.83% 0.74

Model interpretation and visualization
To explain the performance of the proposed model, we extracted
and visualized the inputs and outputs from all layers of
DeepLncPro, namely the original inputs, outputs of the first
convolutional layer, outputs of the second convolutional layer and
outputs of the fully connected layer. To facilitate understanding
these features, the UMAP [49] was used to show the distribution

of positive and negative samples. It was found that the positive
and negative samples couldn’t be separated in the feature space
formed by the original input features (Figure 4A). However, the
margins between positive and negative samples were more clearly
separated in the feature space based on the output features
of the first and second convolutional layers (Figure 4B and C).
The positive and negative samples could be more clearly
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Figure 3. The ROC curves of DeepLncPro, RF, LR, KNN, SVM and XGBoost validated in the test dataset. (A) The ROC curves for identifying lncRNA
promoters in human. (B) The ROC curves for identifying lncRNA promoters in mouse.

Figure 4. Distribution of positive and negative samples in the 2D feature space. The blue and orange dots represent positive and negative samples,
respectively. (A) The feature space of the original input features. (B) The feature space based on the outputs of the first convolutional layer. (C) The
feature space based on the outputs of the second convolutional layer. (D) The feature space based on the outputs of the fully connected layer.
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Figure 5. The four representative motifs extracted by DeepLncPro in human lncRNAs. The motifs correspond to the binding sites of the transcription
factors SP1 (P = 9.17e − 06), HIF1A (P-value = 1.61e − 06), ZNF384 (P-value = 3.83e − 05) and SP3 (P-value = 6.89e − 05). In each case, the top panel was the
known motif in the JASPAR database, and the bottom panel was the motif extracted by DeepLncPro.

separated based on the output features of the fully connected
layer (Figure 4D). These results demonstrated the ability of the
proposed model in extracting potential features, which help to
learn a better decision margin for identifying lncRNA promoters.

To demonstrate the ability of DeepLncPro in capturing
informative motifs, we calculated the PWM (see Motif extraction
section for details) to analyze the extracted motifs from the
24 filters of the first convolutional layer. The TOMTOM was
then used to map the motifs learned from each filter to known
transcription factor (TF) binding motifs in the JASPAR database.
Finally, we obtained 87 and 85 known motifs in JASPAR with P-
value < 0.05 in human and mouse (Supplementary Tables S7 and
S8 available online at http://bib.oxfordjournals.org/), respectively.
The representative binding motifs of the four TFs (SP1; HIF1A,
ZNF384 and SP3) obtained from human and mouse were shown
in Figure 5 and Supplementary Figure S2 available online at
http://bib.oxfordjournals.org/. In each case, the top panel was
the known motif in the JASPAR database, and the bottom panel

was the motif extracted by DeepLncPro. It was observed that
the representative motifs in mouse were very similar to those
in human. As indicated by the hTFtarget database [50], the
transcription factors SP1, HIF1A, ZNF384 and SP3 were all involved
in the regulation of lncRNA expression, which demonstrated the
biological significance of DeepLncPro.

Conclusion
LncRNA plays important regulatory roles in various biological
processes. Accurate identification of lncRNA promoter is helpful
to understand its regulatory mechanisms. In order to improve
the model performance and provide model explainability in pro-
moter prediction, we proposed a deep learning based model,
called DeepLncPro, to identify lncRNA promoters in human and
mouse. A series of comparative experiments demonstrated that
DeepLncPro is superior to the state-of-the-art machine learning
methods and existing models for identifying lncRNA promoters.
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The excellent performance of DeepLncPro is attributed to the
informative features extracted from the convolutional layers. By
mapping these features to JASPAR database, it was found that
they are the known transcription factor binding motifs, which
provides the interpretability of DeepLncPro. An open-source tool
for DeepLncPro was provided at https://github.com/zhangtian-
yang/DeepLncPro, which will stimulate further studies on lncRNA
promoter identification.

It should be pointed out that only the sequence-derived infor-
mation was used in DeepLncPro, which is not enough to capture
the information depicting promoters. It has been reported that
the data from both ATAC-seq and ChIP-seq are also key signals in
promoter regions [51, 52]. Therefore, in the future work, we need to
collect and integrate these data for identifying lncRNA promoters.
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Key Points

• A convolutional neural network based model, called
DeepLncPro, is proposed to identify human and mouse
lncRNA promoters.

• Comparative studies demonstrated that DeepLncPro
outperforms existing models for identification of
lncRNA promoters.

• DeepLncPro is capable of capturing transcription factor
binding sites, which facilitates its biological interpreta-
tion.

• An open-source tool for DeepLncPro is provided at
https://github.com/zhangtian-yang/DeepLncPro.
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